287
Views
38
CrossRef citations to date
0
Altmetric
Research Article

MECHANISMS OF CELL-CYCLE CHECKPOINTS: AT THE CROSSROADS OF CARCINOGENESIS AND DRUG DISCOVERY*

&
Pages 283-305 | Published online: 10 Oct 2000

REFERENCES

  • Dikic I., Blaukat A. Protein tyrosine kinase-mediated pathways in G protein-coupled receptor signaling. Cell. Biochem. Biophys. 1999; 30(3)369–387
  • Gutkind J. S. Cell growth control by G protein-coupled receptors: From signal transduction to signal integration. Oncogene 1998; 17: 1331–1342
  • Aaronson S. A., Tronick S. R. Transforming genes of human malignancies. Carcinogen. Compr. Surveys 1985; 10: 35–49
  • Kraus M. H., Pierce J. H., Flemming T. P., Robbins K. C., DiFiore P. P., Aaronson S. A. Mechanisms by which genes encoding growth factor receptors contribute to malignant conversion. Ann. NY Acad. Sci. 1988; 551: 320–335
  • Tronick S. R., Aaronson S. A. Oncogenes, growth regulation, and cancer. Messenger Phosphoprotein Res. 1988; 21: 201–214
  • Ross J. S., Fletcher J. A. HER-2/neu (c-erb-B2) gene and protein in breast cancer. Am. J. Clin. Pathol. 1999; 112(1)S53–S67
  • Berns E. M., Foekens J. A., Van Staveren I. L., Van Putten W. L., de Koning H. Y., Portengen H., Klijn J. G. Oncogene amplification and prognosis in breast cancer: Relationship with systemic treatment. Gene 1995; 159(1)11–18
  • Yamamoto T., Taya S., Kaibuchi K. Ras-induced transformation and signaling pathway. J. Biochem. 1999; 126(5)779–803
  • Kerkhoff E., Rapp U. R. Cell cycle targets of Ras/Raf signalling. Oncogene 1998; 17: 1457–1462
  • Facchini L. M., Penn L. Z. The molecular role of Myc in growth and transformation: Recent discoveries lead to new insights. FASEB J. 1998; 12: 633–651
  • Murakami Y., Sekiya T. Accumulation of genetic alterations and their significance in each primary human cancer and cell line. Mutat. Res. 1998; 400: 421–437
  • Vineis P., Malats N., Porta M., Real F. Human cancer, carcinogenic exposures and mutation spectra. Mutat. Res. 1999; 436: 185–194
  • Li E. E., Heflich R. H., Bucci T. J., Manjanatha M. G., Blaydes B. S., Delclos K. B. Relationships of DNA adduct formation, K-ras activation, mutations and tumorigenic activities of 6-nitrochrysene and its metabolites in the lungs of CD-1 mice. Carcinogenesis 1994; 15: 1377–1385
  • Nagao M., Ushijima T., Wakabayashi K. Dietary carcinogens and mammary carcinogenesis. Cancer 1994; 74: 1063–1069
  • Marcu K. B., Bossone S. A., Patel A. J. Myc function and regulation. Annu. Rev. Biochem. 1992; 61: 809–860
  • Spencer C. A., Groudine M. Control of c-Myc regulation in normal and neoplastic cells. Adv. Cancer Res. 1991; 56: 1–48
  • Land H., Parada J. F., Weinberg R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 1983; 304: 596–602
  • Lugo T. G., Witte O. N. The BCR–ABL oncogene transforms Rat-1 cells and cooperates with v-myc. Molec. Cell. Biol. 1989; 9: 1263–1270
  • Barone M. V., Coutneidge S. A. Myc but not Fos rescue of PDGF signaling block caused by kinase-inactive Src. Nature 1995; 378: 509–512
  • Leone G., DeGregori J., Sears R., Jakoi L., Nevins L. R. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 1997; 387: 422–426
  • Prendergast G. C., Ziff E. B. Methylation-sensitive sequence-specific DNA binding by the c-myc basic region. Science 1991; 251: 186–189
  • Blackwood E. M., Eisenman R. N. Max: A helix–loop–helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 1991; 251: 1211–1217
  • Prendergast G. C., Lawe D., Ziff E. B. Association of myn, the murine homolog of max, with c-myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 1991; 65: 395–407
  • Campisi J., Gray H. E., Pardee A. B., Dean M., Sonenshein G. E. Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation. Cell 1984; 36: 241–247
  • Kelly K., Cochran B. H., Stiles C. D., Leder P. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 1983; 35: 603–610
  • Moore J. P., Hancock D. C., Littlewood T. D., Evan G. I. A sensitive and quantitative enzyme-linked immunosorbence assay for the c-Myc and n-Myc oncoproteins. Oncogene Res. 1987; 2: 65–80
  • Miltenberger R. J., Sukow K. A., Farnham P. J. An E-box-mediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants. Molec. Cell. Biol. 1995; 15: 2527–2535
  • Bello-Fernandez C., Packham G., Cleveland J. L. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc. Natl. Acad. Sci. USA 1993; 90: 7804–7808
  • Hibshoosh H., Johnson M., Weinstein I. B. Effects of overexpression of ornithine decarboxylase (ODC) on growth control and oncogene-induced cell transformation. Oncogene 1991; 6: 739–743
  • Moshier J. A., Dosescu J., Skunca M., Luk G. D. Transformation of NIH/3T3 cells by ornithine decarboxylase overexpression. Cancer Res. 1993; 53: 2618–2622
  • Johnson R., Spiegelman B., Hanahan D., Wisdom R. Cellular transformation and malignancy induced by ras require c-jun. Molec. Cell. Biol. 1996; 16(8)4504–4511
  • Ikeda K., Monden T., Tsujie M., Izawa H., Yamamoto H., Ohnishi T., Ohue M., Sekimoto M., Tomita N., Monden M. Cyclin D, CDK4 and p16 expression in colorectal cancer. Nippon Rinsho 1996; 54(4)1054–1059
  • Donnellan R., Chetty R. Cyclin D1 and human neoplasia. Molec. Pathol. 1998; 51(1)1–7
  • Resnitzky D., Gossen M., Bujard H., Reed S. I. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Molec. Cell. Biol. 1994; 14: 1669–1679
  • Lew D. J., Dulic V., Reed S. I. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 1991; 66: 1197–1206
  • Matsushime H., Ewen M. E., Strom D. K., Kato J-Y., Hanks S. K., Roussel M. F., Sherr C. J. Identification and properties of an atypical catalytic subunit (p34 psk.J3 cdk4) for mammalian D type G1 cyclins. Cell 1992; 71: 323–334
  • Motokura T., Bloom T., Kim H. G., Juppner H., Ruderman J. V., Kronenberg H. M., Arnold A. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 1991; 350: 512–515
  • Xiong Y., Connolly T., Futcher B., Beach D. Human D-type cyclin. Cell 1991; 65: 691–699
  • Matsushime H., Quelle D. E., Shurtleff S. A., Shibuya M., Sherr C. J., Kato J.-Y. D-type cyclin-dependent kinase activity in mammalian cells. Molec. Cell. Biol. 1994; 14: 2066–2076
  • Meyerson M., Harlow E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Molec. Cell. Biol. 1994; 14: 2077–2086
  • Solomon M. J., Harper J. W., Shuttleworth J. CAK, the p34cdc2 activating kinase, contains a protein identical or closely related to p40MO15. EMBO J. 1993; 12: 3133–3142
  • Roberts J. M., Koff A., Polyak K., Firpo E., Collins S., Ohtsubo M., Massague J. Cyclins, Cdks, and cyclin kinase inhibitors. Cold Spring Harbor Symp. Quant. Biol. 1994; 59: 31–38
  • Ohtsubo M., Theodoras A. M., Schumacher J., Roberts J. M., Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Molec. Cell. Biol. 1995; 15: 2612–2624
  • Roussel M. F. Key effectors of signal transduction and G1 progression. Adv. Cancer Res. 1998; 74: 1–24
  • Nevins J. R. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ. 1998; 9: 585–593
  • Harbour J. W., Luo R. X., Dei Santi A., Postigo A. A., Dean D. C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 1999; 98: 859–869
  • Brown V. D., Phillips R. A., Gallie B. L. Cumulative effects of phosphorylation of pRb on regulation of E2F activity. Molec. Cell. Biol. 1999; 19(5)3246–3256
  • Lavia P., Jansen-Dürr P. E2F target genes and cell-cycle checkpoint control. BioEssays 1999; 21: 221–230
  • Schulze A., Zerfass K., Spitkovsky D., Middendorp S., Berges J., Helin K., Jansen-Durr P., Henglein B. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site. Proc. Natl. Acad. Sci. USA 1995; 92(24)11,264–11,268
  • DeGregori J., Kowalik T., Nevins J. R. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis and G1/S-regulatory genes. Molec. Cell. Biol. 1999; 15(10)5846–5847
  • Buchkovich K., Duffy L. A., Harlow E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 1989; 58: 1097–1106
  • Chen P-L., Scully P., Shew J-Y., Wang J. Y. J., Lee W.-H. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 1989; 58: 1193–1198
  • Furukawa Y., DeCaprio J. A., Freeman A., Kanakura Y., Nakamura M., Ernst T. J., Livingston D. M., Griffin J. D. Expression and state of phosphorylation of the retinoblastoma susceptibility gene product in cycling and noncycling human hematopoietic cells. Proc. Natl. Acad. Sci. USA 1990; 87: 2770–2774
  • Mihara K., Cao X-R., Yen A., Chandler S., Driscoll B., Murphree A. L., T'Ang A., Fung Y-K. T. Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product. Science 1989; 246: 1300–1303
  • Mittnacht S., Lees J. A., Desai D., Harlow E., Morgan D. O., Weinberg R. A. Distinct sub-populations of the retinoblastoma protein show a distinct pattern of phosphorylation. EMBO J. 1994; 13: 118–127
  • Sellers W. R., Kaelin W. G., Jr. Role of the retinoblastoma protein in the pathogenesis of human cancer. J. Clin. Oncol. 1997; 15(11)3301–3312
  • Vaughan T. J., Pascall J. C., Brown K. D. Nucleotide sequence and tissue distribution of mouse transforming growth factor-α. Biochim. Biophys. Acta Gene Struct. Express 1992; 1132: 322–324
  • Kitagawa M., Higashi H., Suzuki-Takahashi I., Segawa K., Hanks S. K., Taya Y., Nishimura S., Okuyama A. Phosphorylation of E2F-1 by cyclin A-cdk2. Oncogene 1995; 10: 229–236
  • Devoto S. H., Mudryj M., Pines J., Hunter T., Nevins J. R. A cyclin A-protein kinase complex possesses sequence-specific DNA binding activity: p33cdk2 is a component of the E2F–cyclin A complex. Cell 1992; 68: 167–176
  • Mudryj M., Devoto S. H., Hiebert S. W., Hunter T., Pines J., Nevins J. R. Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell 1991; 65: 1243–1253
  • Yang R., Muller C., Huynh V., Fung Y. K., Yee A. S., Koeffler H. P. Functions of cyclin A1 in the cell cycle and its interactions with transcription factor E2F-1 and the Rb family of proteins. Molec. Cell. Biol. 1999; 19(3)2400–2407
  • Nurse P. Universal control mechanism regulating onset of M-phase. Nature 1990; 344: 503–508
  • Ducommun B., Brambilla P., Felix M.-A., Franza B. R., Karsenti E., Jr., Draetta G. cdc2 phosphorylation is required for its interaction with cyclin. EMBO J. 1991; 10: 3311–3319
  • Gould K. L., Nurse P. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 1989; 342: 39–45
  • Liu F., Stanton J. J., Wu Z., Piwnica-Worms H. The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and golgi complex. Molec. Cell. Biol. 1997; 17: 571–583
  • Lundgren K., Walworth N., Booher R., Dembski M., Kirschner M., Beach D. mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Science 1991; 270: 86–90
  • Mueller P. R., Coleman T. R., Kumagai A., Dunphy A. Myt1: A membrane-associated inhibitory kinase that phosphorylates cdc2 on both threonine-14 and tyrosine-15. Science 1995; 270: 86–93
  • Galaktionov K., Beach D. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: Evidence for multiple roles of mitotic cyclins. Cell 1991; 67: 1181–1194
  • Dessev G., Iovcheva-Dessev C., Bischoff J. R., Beach D., Goldman R. A complex containing p34cdc2 and cyclin B phosphorylates the nuclear lamin and disassembles nuclei of clam oocytes in vitro. J. Cell. Biol. 1991; 112(4)523–533
  • Doree M., Labbe J. C., Picard A. M phase-promoting factor: Its identification as the M phase-specific H1 histone kinase and its activation by dephosphorylation. J. Cell Sci. 1989; 12(Suppl.)39–51
  • Kellogg D. R., Oegema K., Raff J., Schneider K., Alberts B. M. CP60: A microtubule-associated protein that is localized to the centrosome in a cell cycle-specific manner. Molec. Biol. Cell 1995; 6(12)1673–1684
  • Fellous A., Kubelka M., Thibier C., Taieb F., Haccard O., Jessus C. Association of p34cdc2 kinase and MAP kinase with microtubules during the meiotic maturation of Xenopus oocytes. Int. J. Dev. Biol. 1994; 38(4)651–659
  • Tombes R. M., Peloquin J. G., Borisy G. G. Specific association of an M-phase kinase with isolated mitotic spindles and identification of two of its substrates as MAP4 and MAP1B. Cell Regul. 1991; 2(11)861–874
  • Hartwell L. H., Weinert T. A. Checkpoints: Controls that ensure the order of cell cycle events. Science 1989; 246: 629–634
  • Hartwell L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 1992; 71: 543–546
  • Ozbun M. A., Butel J. S. Tumor suppressor p53 mutations and breast cancer: A critical analysis. Adv. Cancer Res. 1995; 66: 71–142
  • Burns T. F., El-Deiry W. S. The p53 pathway and apoptosis. J. Cell. Physiol. 1999; 181: 231–239
  • Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991; 51: 6304–6311
  • Graeber T. G., Peterson J. F., Tsai M., Monica K., Fornance A. J., Jr., Giaccia A. J. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Molec. Cell. Biol. 1994; 14: 6264–6277
  • Linke S. P., Clarkin K. C., Di Leonardo A., Tsou A., Wahl G. M. A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev. 1996; 10: 934–947
  • Lowe S. W., Ruley H. E. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev. 1993; 7: 535–545
  • El-Deiry W. S., Kern S. E., Pietenpol J. A., Kinzler K. W., Vogelstein B. Definition of a consensus binding site for p53. Nature Genet. 1992; 1: 45–49
  • Kern S. E., Pietenpol J. A., Thiagalingam S., Seymour A., Kinzler K. W., Vogelstein B. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 1992; 256: 827–830
  • Pietenpol J. A., Tokino T., El-Deiry W. S., Kinzler K. W., Vogelstein B. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. USA 1994; 91: 1998–2002
  • Agarwal M. L., Taylor W. R., Chernov M. V., Chernova O. B., Stark G. R. The p53 network. J. Biol. Chem. 1999; 273: 1–4
  • Harvey M., Sands A. T., Weiss R. S., Hegi M. E., Wiseman R. W., Pantazis P., Giovanella B. C., Tainsky M. A., Bradley A., Donehower L. A. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 1993; 8: 2457–2467
  • Brugarolas J., Moberg K., Boyd S. D., Taya Y., Jacks T., Lees J. A. Inhibi- tion of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein- mediated G1 arrest after gamma-irradiation. Proc. Natl. Acad. Sci. USA 1999; 96: 1002–1007
  • Brugarolas J., Chandrasekaran C., Gordon J. I., Beach D., Jacks T., Hannon G. J. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 1995; 377: 552–557
  • Deng C. X., Zhang P. M., Harper J. W., Elledge S. J., Leder P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82: 675–684
  • Harper J. W., Adami G. R., Wei N., Keyomarsi K., Elledge S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805–816
  • Sherr C. J., Roberts J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995; 9: 1149–1163
  • Xiong Y. Why are there so many CDK inhibitors?. Biochim. Biophys. Acta Rev. Cancer 1996; 1288: 1–5
  • Sharpless N. E., Dephino R. A. The INK4A/ARF locus and its two gene products. Curr. Opin. Gen. Dev. 1999; 9: 22–30
  • Jin P., Gu Y., Morgan D. O. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell Biol. 1996; 134: 963–970
  • Rhind N., Furnari B., Russel P. Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev. 1997; 511: 504–510
  • Coleman T. R., Dunphy W. G. Cdc2 regulatory factors. Curr. Opin. Cell Biol. 1994; 6: 877–882
  • Peng C. Y., Graves P. R., Thoma R. S. A., Wu, Shaw A. S., Piwnica-Worms H. Mitotic and G2 checkpoint control: Regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 1997; 277: 1501–1505
  • Chen L., Liu T. H., Walworth N. C. Association of Chk1 with 14-3-3 proteins is stimulated by DNA damage. Genes Dev. 1999; 13: 675–685
  • Agarwal M. L., Agarwal A., Taylor W. R., Stark G. R. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc. Natl. Acad. Sci. USA 1995; 92: 8493–8497
  • Innocente S. A., Abrahamson J. L. A., Cogswell J. P., Lee J. M. p53 regulates a G2 checkpoint through cyclin B1. Proc. Natl. Acad. Sci. USA 1999; 96: 2147–2152
  • Bunz F., Dutriaux A., Lengauer C., Waldman T., Zhou S., Brown J. P., Sedivy J. M., Kinzler K. W., Vogelstein B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282: 1497–1501
  • Chan T. A., Hermeking H., Lengauer C., Kinzler K. W., Vogelstein B. 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 1999; 401: 616–620
  • Taylor W. R., DePrimo S. E., Agarwal A., Agarwal M. L., Schonthal A. H., Katula K. S., Stark G. R. Mechanisms of G2 arrest in response to overexpression of p53. Molec. Biol. Cell 1999; 10(11)3607–3622
  • Flatt P. M., Tang L. J., Scatena C. D., Stak S. T., Pientenpol J. A. p53 regulation of G2 checkpoint is retinoblastoma protein dependent. Mol. Cell Biol. 2000; 20(12)4210–4223
  • Toyoshima F., Moriguchi T., Wada A., Fukuda M., Nishida E. Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J. 1998; 17: 2728–2735
  • Li J., Meyer A. N., Donoghue D. J. Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation. Proc. Natl. Acad. Sci. USA 1997; 94: 502–507
  • Pines J., Hunter T. Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J. Cell Biol. 1991; 115: 1–17
  • Jin P., Hardy S., Morgan D. O. Nuclear localization of cyclin B1 controls mitotic entry after DNA damage. J. Cell Biol. 1998; 141: 875–885
  • Amon A. The spindle checkpoint. Curr. Opin. Genet. Dev. 1999; 9: 69–75
  • King R. W., Deshaies R. J., Peters J. M., Kirschner M. W. How proteolysis drives the cell cycle. Science 1996; 274: 1652–1659
  • Li X., Nicklas R. B. Mitotic forces control a cell-cycle checkpoint. Nature 1995; 373: 630–632
  • Li X., Nicklas R. B. Tension-sensitive kinetochore phosphorylation and the chromosome distribution checkpoint in praying mantid spermatocytes. J. Cell. Sci. 1997; 110: 537–545
  • Waters J. C., Chen R. H., Murray A. W., Salmon E. D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 1998; 141: 1181–1191
  • Kim S. H., Lin D. P., Matsumoto S., Kitazono A., Matsumoto T. Fission yeast Slp1: An effector of the Mad2-dependent spindle checkpoint. Science 1998; 279: 1045–1047
  • Fang G. W., Yu H. T., Kirschner M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 1998; 12: 1871–1883
  • Kallio M., Weinstein J., Daum J. R., Burke D. J., Gorbsky G. J. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J. Cell. Biol. 1998; 141: 1393–1406
  • Li Y., Gorbea C., Mahaffey D., Rechsteiner M., Benezra R. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc. Natl. Acad. Sci. USA 1997; 94: 12,431–12,436
  • Chen R-H., Waters J. C., Salmon E. D., Murray A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 1996; 274: 242–246
  • Li Y., Benezra R. Identification of a human mitotic checkpoint gene, hsMAD2. Science 1996; 274: 246–248
  • Taylor S. S., McKeon F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 1997; 89: 727–735
  • Taylor S. S., Ha E., McKeon F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J. Cell Biol. 1998; 142: 1–11
  • Cahill D. P., Lengauer C., Yu J., Riggins G. J., Willson J. K. V., Markowitz S. D., Kinzler K. W., Vogelstein B. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392: 300–303
  • Lanni J. S., Jacks T. S. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Molec. Cell. Biol. 1998; 18: 1055–1064
  • Khan S. H., Wahl G. M. p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest. Cancer Res. 1998; 58: 396–401
  • Stewart Z. A., Leach S. D., Pietenpol J. A. p21Waf1/Cip1 inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Molec. Cell. Biol. 1999; 19: 205–215
  • Sinov R. V., Haupt Y. The cellular response to p53: The decision between life and deth. Oncogene. 1999; 18: 6145–6157
  • Choisy-Rossi C., Reisdorf P., Yonish-Rouach E. Mechanisms of p53-induced apoptosis: In search of genes which are regulated during p53-mediated cell death. Toxicol. Lett. 1998; 103: 491–496
  • Yonish-Rouach E., Deguin V., Zaitchouk T., Breugnot C., Mishal Z., Jenkins J. R., May E. Transcriptional activation plays a role in the induction of apoptosis by transiently transfected wild-type p53. Oncogene 1996; 12: 2197–2205
  • Attardi L. D., Lowe S. W., Brugarolas J., Jacks T. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 1996; 15: 3693–3701
  • Sabbatini P., Lin J. Y., Levine A. J., White E. Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes Dev. 1995; 9: 2184–2192
  • Buckbinder L., Talbott R., Velasco-Miguel S., Takenaka I., Faha B., Seizinger B. R., Kley N. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 1995; 377: 646–649
  • Owen-Schaub L. B., Zhang W., Cusack J. C., Angelo L. S., Santee S. M., Fujiwara T., Roth J. A., Deisseroth A. B., Zhang W.-W., Kruzel E., Radinsky R. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Molec. Cell. Biol. 1995; 15: 3032–3040
  • Ashkenazi A., Dixit V. M. Death receptors: Signaling and modulation. Science 1998; 281: 1305–1308
  • Green D., Kroemer G. The central executioners of apoptosis: Caspases or mitochondria?. Trends Cell. Biol. 1998; 8: 267–271
  • Friesen C., Herr I., Krammer P. H., Debatin K. M. Involvement of the CD95 (APO 1/Fas) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nature Med. 1996; 2: 574–577
  • Juin P., Hueber A. O., Littlewood T., Evan G. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev. 1999; 13(11)1367–1381
  • Fuchs E. J., McKenna K. A., Bedi A. p53-dependent DNA damage-induced apoptosis requires Fas/APO-1-independent activation of CPP32β. Cancer Res. 1997; 57: 2550–2554
  • Wu G. S., Burns T. F., McDonald E. R., III, Jiang W., Meng R., Krantz I. D., Kao G., Gan D. D., Zhou J. Y., Muschel R., Hamilton S. R., Spinner N. B., Markowitz S., Wu G., El-Deiry W. S. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Genet 1997; 17: 141–143
  • Miyashita T., Reed J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–299
  • Kelekar A., Thompson C. B. Bcl-2-family proteins: The role of the BH3 domain in apoptosis. Trends Cell Biol. 1998; 8: 324–330
  • Knudson C. M., Tung K. S. K., Tourtellotte W. G., Brown G. A. J., Korsmeyer S. J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 1995; 270: 96–99
  • Brady H. J., Salomons G. S., Bobeldijk R. C., Berns A. J. T cells from baxalpha transgenic mice show accelerated apoptosis in response to stimuli but do not show restored DNA damage-induced cell death in the absence of p53 gene product. EMBO J. 1996; 15(6)1221–1230
  • Yin C., Knudson C. M., Korsmeyer S. J., Van D. T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 1997; 385: 637–640
  • McCurrach M. E., Connor T. M., Knudson C. M., Korsmeyer S. J., Lowe S. W. bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA 1994; 94: 2345–2349
  • Johnson T. M., Yu Z. X., Ferrans V. J., Lowenstein R. A., Finkel T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA 1996; 93(21)11,848–11,852
  • Li P. F., Dietz R., von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J. 1999; 18(21)6027–6036
  • Yin Y. X., Terauchi Y., Solomon G. G., Aizawa S., Rangarajan P. N., Yazaki Y., Kadowaki T., Barrett J. C. Involvement of p85 in p53-dependent apoptotic response to oxidative stress. Nature 1998; 391: 707–710
  • Polyak K., Xia Y., Zweier J. L., Kinzler K. W., Vogelstein B. A model for p53-induced apoptosis. Nature 1997; 389: 300–305
  • Venot C., Maratrat M., Dureuil C., Conseiller E., Bracco L., Debussche L. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J. 1998; 17: 4668–4679
  • Caelles C., Helmberg A., Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 1994; 370: 220–223
  • Bates S., Vousden K. H. Mechanisms of p53-mediated apoptosis. Cell. Molec. Life Sci. 1999; 55: 28–37
  • Chen X. B., Ko L. J., Jayaraman L., Prives C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 1996; 10: 2438–2451
  • Haupt Y., Rowan S., Shaulian E., Vousden K. H., Oren M. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 1995; 9: 2170–2183
  • Murphy M., Hinman A., Levine A. J. Wild-type p53 negatively regulates expression of a microtubule-associated protein. Genes Dev. 1996; 10: 2971–2980
  • Roperch J. P., Alvaro V., Prieur S., Tuynder M., Nemani M., Lethrosne F., Piouffre L., Gendron M. C., Israeli D., Dausset J., Oren M., Amson R., Telerman A. Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nature Med. 1998; 4: 835–838
  • Prisco M., Hongo A., Rizzo M. G., Sacchi A., Baserga R. The insulin-like growth factor I receptor as a physiologically relevant target of p53 in apoptosis caused by interleukin-3 withdrawal. Molec. Cell. Biol. 1994; 17: 1084–1092
  • Wang X. W., Yeh H., Schaeffer L., Roy R., Moncollin V., Egly J.-M., Wang Z., Friedberg E. C., Evans M. K., Taffe B. G., Bohr V. A., Weeda G., Hoeijmakers J. H. J., Forrester K., Harris C. C. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nature Genet. 1995; 10: 188–195
  • Bennett M., Macdonald K., Chan S. W., Luzio J. P., Simari R., Weissberg P. Cell surface trafficking of Fas: A rapid mechanism of p53-mediated apoptosis. Science 1998; 282: 290–293
  • Puisieux A., Lim S., Groopman J., Ozturk M. Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined carcinogens. Cancer Res. 1991; 51(22)6185–6189
  • Yang J., Deuksen-Hughes P. A new approach to identifying genotoxic carcinogens: p53 induction as an indicator of genotoxic damage. Carcinogenesis 1998; 19(6)1117–1125
  • Ramet M., Castren K., Jarvinen K., Pekkala K., Turpeenniemi-Hujanen T., Soini Y., Paakko P., Vahakangas K. p53 protein expression is correlated with benzo[a]pyrene-DNA adducts in carcinoma cell lines. Carcinogenesis 1995; 16(9)2117–2124
  • McGregor W. G. DNA repair, DNA replication, and UV mutagenesis. J. Invest. Dermatol. Symp. Proc. 1999; 4(1)1–5
  • Daya-Grosjean L., Dumaz N., Sarasin A. The specificity of p53 mutation spectra in sunlight induced human cancers. J. Photochem. Photobiol. B 1995; 28(2)115–124
  • Hussain S. P., Harris C. C. p53 mutation spectum and load: The generation of hypotheses linking the exposure of endogenous or exogenous carcinogens to human cancer. Mutat. Res. 1999; 428: 23–32
  • Wang J. S., Groopman J. D. DNA damage by mycotoxins. Mutat. Res. 1999; 424(1–2)167–181
  • Yao S. L., Akhtar A. J., McKenna K. A., Bedi G. C., Sidransky D., Mabry M., Ravi R., Collector M. I., Jones R. J., Sharkis S. J., Fuchs E. J., Bedi A. Selective radiosensitization of p53-deficient cells by caffeine-mediated activation of p34cdc2 kinase. Nature Med. 1996; 2: 1140–1143
  • Anon., Ironing out the angles in p53. Nature Struct. Biol. 1995; 2: 253–254
  • Russell K. J., Wiens L. W., Demers W., Galloway D. A., Plon S. E., Groudine M. Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint-deficient and G1-checkpoint competent cells. Cancer Res. 1995; 55: 1639–1642
  • Blume E. Researchers gain footholds in the cell cycle. J. Natl. Cancer Inst. 1995; 87: 1504–1505
  • Bunz F., Hwang P. M., Torrance C., Waldman T., Zhang Y., Dillehay L., Williams J., Lengauer C., Kinzler K. W., Vogelstein B. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 1999; 104: 263–269
  • Wang Q., Fan S., Eastman A., Worland P. J., Sausville E. A., O'Connor P. M. UCN-01: A potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J. Natl. Cancer Inst. 1996; 88: 956–965
  • Roberge M., Berlinck R. G. S., Xu L., Anderson H. J., Lim L. Y., Curman D., Stringer C. M., Friend S. H., Davies P., Vincent I., Haggarty ., Kelly M. T., Britton R., Piers E., Andersen R. J. High-throughput assay for G2 checkpoint inhibitors and identification of the structurally novel compound isogranulatimide. Cancer Res. 1998; 58: 5701–5706

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.