2,017
Views
586
CrossRef citations to date
0
Altmetric
Research Article

QUANTIFICATION AND SIGNIFICANCE OF PROTEIN OXIDATION IN BIOLOGICAL SAMPLES*

Pages 307-326 | Published online: 10 Oct 2000

REFERENCES

  • Stadtman E. R. Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological consequences. Free Radical Biol. Med. 1990; 9: 315–325
  • Dean R. T., Fu S., Stocker R., Davies M. J. Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 1997; 324: 1–18
  • Stadtman E. R., Berlett B. S. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab. Rev. 1998; 30: 225–243
  • Garrison W. M., Jayko M. E., Bennett W. Radiation-induced oxidation of protein in aqueous solution. Radiat. Res. 1962; 16: 483–502
  • Heinecke J. W., Li W., Daehnke H. L., Goldstein J. A. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J. Biol. Chem. 1993; 268: 4069–4077
  • Schraufstatter I. U., Browne K., Harris A, Hyslop P. A., Jackson J. H., Quehenberger O., Cochrane C. G. Mechanisms of hypochlorite injury of target cells. J. Clin. Invest. 1990; 85: 554–562
  • Handelman G. J., Nightingale Z. D., Dolnikowski G. G., Blumberg J. B. Formation of carbonyls during attack on insulin by submolar amounts of hypochlorite. Anal. Biochem. 1998; 258: 339–348
  • Yang C-Y., Gu Z-W., Yang H-X., Yang M., Gotto A. M., Smith C. V. Oxidative modifications of APOB-100 by exposure of low density lipoproteins to HOCl in vitro. Free Radical Biol. Med. 1997; 23: 82–89
  • Yan L. J., Traber M. G., Kobuchi H., Matsugo S., Tritschler H. J., Packer L. Efficacy of hypochlorous acid scavengers in the prevention of protein carbonyl formation. Arch. Biochem. Biophys. 1996; 327: 330–334
  • Korbashi P, Kohen R., Katzhendler J., Chevion M. Iron mediates paraquat toxicity in Escherichia coli. J. Biol. Chem. 1986; 261: 12,472–12,476
  • Hartley D. P., Kroll D. J., Petersen D. R. Prooxidant-initiated lipid peroxidation in isolated rat hepatocytes: Detection of 4-hydroxynonenal- and malondialdehyde-protein adducts. Chem. Res. Toxicol. 1997; 10: 895–905
  • Tirmenstein M. A., Nelson S. D. Acetaminophen-induced oxidation of protein thiols. Contribution of impaired thiol-metabolizing enzymes and the breakdown of adenine nucleotides. J. Biol. Chem. 1990; 265: 3059–3065
  • Eiserich J. P., Van der Vliet A., Handelman G. J., Halliwell B., Cross C. E. Dietary antioxidants and cigarette smoke-induced biomolecular damage: A complex interaction. Am. J. Clin. Nutr. 1995; 62: 1490S–1500S
  • Berlett B. S., Stadtman E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 1997; 272: 20,313–20,316
  • Steinbrecher U. P., Witztum J. L., Parthasarathy S., Steinberg D. Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Arteriosclerosis 1987; 7: 135–143
  • Yan L. J., Lodge J. K., Traber M. G., Matsugo S., Packer L. Comparison between copper-mediated and hypochlorite-mediated modifications of human low density lipoproteins evaluated by protein carbonyl formation. J. Lipid Res. 1997; 38: 992–1001
  • Davies K. J. A. Protein damage and degradation by oxygen radicals. J. Biol. Chem. 1987; 262: 9895–9901
  • Davies K. J. A., Delsignore M. E., Lin S. W. Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J. Biol. Chem. 1987; 262: 9902–9907
  • Fu S. L., Dean R. T. Structural characterization of the products of hydroxyl-radical damage to leucine and their detection on proteins. Biochem. J. 1997; 324: 41–48
  • Oliver C. N. Inactivation of enzymes and oxidative modification of proteins by stimulated neutrophils. Arch. Biochem. Biophys. 1987; 253: 62–72
  • Balasubramanian D., Du X., Zigler J. S. The reaction of singlet oxygen with proteins, with special reference to crystallins. Photochem. Photobiol. 1990; 52: 761–768
  • Shen H. R., Spikes J. D., Kopecekova P., Kopecek J. Photodynamic crosslinking of proteins. Model studies using histidine- and lysine-containing N-(2-hydroxypropyl)methacrylamide copolymers. J. Photochem. Photobiol. B 1996; 34: 203–210
  • Hu M. L., Tappel A. L. Potentiation of oxidative damage to proteins by ultraviolet-A and protection by antioxidants. Photochem. Photobiol. 1992; 56: 357–363
  • Cross C. E., Reznik A. Z., Packer L., Davis P. A., Suzuki Y. J., Halliwell B. Oxidative damage to human plasma proteins by ozone. Free Radical Res. Commun. 1992; 15: 347–352
  • Berlett B. S., Levine R. L., Stadtman E. R. Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin. J. Biol. Chem. 1996; 271: 4177–4182
  • Fucci L., Oliver C. N., Coon M. J., Stadtman E. R. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: Possible implication in protein turnover and ageing. Proc. Natl. Acad. Sci. USA 1983; 80: 1521–1525
  • Haberland M. E., Fong D., Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 1988; 241: 215–218
  • Kim J. G., Sabbagh F., Santanam N., Wilcox J. N., Medford R. M., Parthasarathy S. Generation of a polyclonal antibody against lipid peroxide-modified proteins. Free Radical Biol. Med. 1997; 23: 251–259
  • Requena J. R., Fu M. X., Ahmed M. U., Jenkins A. J., Lyons T. J., Baynes J. W., Thorpe S. R. Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein. Biochem. J. 1997; 322: 317–325
  • Radi R., Bush K. M., Cosgrove T. P., Freeman B. A. Reaction of xanthine oxidase-derived oxidants with lipid and protein of human plasma. Arch. Biochem. Biophys. 1991; 286: 117–125
  • Lii C-K, Chai Y-C, Zhao W, Thomas J. A., Hendrich S. S-Thiolation and irreversible oxidation of sulfhydryls on carbonic anhydrase III during oxidative stress: A method for studying protein modification in intact cells and tissues. Arch. Biochem. Biophys. 1994; 308: 231–239
  • Vogt W. Oxidation of methionyl residues in proteins: Tools, targets, and reversal. Free Radical Biol. Med. 1995; 18: 93–105
  • Hu M-L. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994; 233: 380–385
  • Kalyanaraman B. Thiyl radicals in biological systems: Significant or trivial. Biochem. Soc. Symp. 1995; 61: 55–63
  • Czapski G. On the use of OH radical scavengers in biological systems. Israel J. Chem. 1984; 24: 29–32
  • Samuni A., Aronovitch J., Godinger D., Chevion M., Czapski G. On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism. Eur. J. Biochem. 1983; 137: 119–124
  • Farber J. M., Levine R. L. Sequence of a peptide susceptible to mixed-function oxidation. Probable cation binding site in glutamine synthetase. J. Biol. Chem. 1986; 261: 4574–4578
  • Stadtman E. R., Oliver C. N. Metal-catalyzed oxidation of proteins. J. Biol. Chem. 1991; 266: 2005–2008
  • Lewisch S. A., Levine R. L. Determination of 2-oxohistidine by amino acid analysis. Anal. Biochem. 1995; 231: 440–446
  • Amici A., Levine R. L., Tsai L., Stadtman E. R. Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions. J. Biol. Chem. 1989; 264: 3341–3346
  • Stadtman E. R., Berlett B. S. Reactive oxygen-mediated protein oxidation in aging and disease. Chem. Res. Toxicol. 1997; 10: 485–494
  • Stadtman E. R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem. 1993; 62: 797–821
  • Hazell L. J., van den Berg J. J. M., Stocker R. Oxidation of low-density lipoprotein by hypochlorite causes aggregation that is mediated by modification of lysine residues rather than lipid oxidation. Biochem. J. 1994; 302: 297–304
  • Hazen S. L., Heinecke J. W. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J. Clin. Invest. 1997; 99: 2075–2081
  • Kettle A. J. Neutrophils convert tyrosyl residues in albumin to chlorotyrosine. FEBS Lett. 1996; 379: 103–106
  • Hazen S. L., Hsu F. F., d'Avignon A., Heinecke J. W. Human neutrophils employ myeloperoxidase to convert alpha-amino acids to a battery of reactive aldehydes: A pathway for aldehyde generation at sites of inflammation. Biochemistry 1998; 37: 6864–6873
  • Hazen S. L., Gaut J. P., Hsu F. F., Crowley J. R., d'Avignon A., Heinecke J. W. p-Hydroxyphenylacetaldehyde, the major product of L-tyrosine oxidation by the myeloperoxidase–H2O2–chloride system of phagocytes, covalently modifies e-amino groups of protein lysine residues. J. Biol. Chem. 1997; 27: 16,990–16,998
  • Ischiropoulos H., Al-Mehdi A. B. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett. 1995; 364: 279–282
  • Tien M., Berlett B. S., Levine R. L., Chock P. B., Stadtman E. R. Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. Proc. Natl. Acad. Sci. USA 1999; 96: 7809–7814
  • Simpson J. A., Narita S., Gieseg S., Gebicki S., Gebicki J. M., Dean R. T. Long-lived reactive species on free-radical-damaged proteins. Biochem. J. 1992; 282: 621–624
  • Giulivi C., Davies K. J. A. Dityrosine: A marker for oxidatively modified proteins and selective proteolysis. Methods Enzymol. 1994; 233: 363–371
  • Heinecke J. W., Li W., Francis G. A., Goldstein J. A. Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J. Clin. Invest. 1993; 91: 2866–2872
  • Fu S., Davis M. J., Stocker R., Dean R. T. Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque. Biochem. J. 1998; 333: 519–525
  • Uchida K., Stadtman E. R. Quantitation of 4-hydroxynonenal protein adducts. Methods Enzymol. 1994; 233: 371–380
  • Rosenfeld M. E., Khoo J. C., Miller E., Parthasarathy S., Palinski W., Witztum J. L. Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid-protein adducts. J. Clin. Invest. 1991; 87: 90–99
  • Uchida K., Kanematsu M., Morimitsu Y, Osawa T., Noguchi N., Niki E. Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J. Biol. Chem. 1998; 273: 16,058–16,066
  • Cabiscol E., Levine R. L. The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc. Natl. Acad. Sci. USA 1996; 93: 4170–4174
  • Degenhardt T. P., Thorpe S. R., Baynes J. W. Chemical modification of proteins by methylglyoxal. Cell. Molec. Biol. 1998; 44: 1139–1145
  • Anderson M. M., Requena J. R., Crowley J. R., Thorpe S. R., Heinecke J. W. The myeloperoxidase system of human phagocytes generates Nepsilon–(carboxymethyl)lysine on proteins: A mechanism for producing advanced glycation end products at sites of inflammation. J. Clin. Invest. 1999; 104: 103–113
  • Oliver C. N., Ahn B., Wittenberger M. E., Stadtman E. R. Oxidative inactivation of enzymes: Implication in protein turnover and aging. Cellular Regulation and Malignant Growth, S. Ebashi. Japan Science Society Press, Tokyo 1985; 320–331
  • Oliver C. N., Levine R. L., Stadtman E. R. A role of mixed-function oxidation reactions in the accumulation of altered enzyme forms during aging. J. Am. Geriat. Soc. 1987; 35: 947–956
  • Carney J. M., Starke-Reed P. E., Oliver C. N., Landum R. W., Cheng M. S., Wu J. F., Floyd R. A. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-a-phenylnitrone. Proc. Natl. Acad. Sci. USA 1991; 88: 3633–3636
  • Yan L. J., Levine R. L., Sohal R. S. Oxidative damage during aging targets mitochondrial aconitase. Proc. Natl. Acad. Sci. USA 1997; 94: 11,168–11,172
  • Yan L. J., Sohal R. S. Mitochondrial adenine nucleotide transferase is modified oxidatively during aging. Proc. Natl. Acad. Sci. USA 1998; 95: 12,896–12,901
  • Cabiscol E., Levine R. L. Carbonic anhydrase III. Oxidative modification in vivo and loss of phosphatase activity during aging. J. Biol. Chem. 1995; 270: 14,742–14,747
  • Shacter E., Williams J. A., Levine R. L. Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation. Free Radical Biol. Med. 1995; 18: 815–821
  • Jasin H. E. Generation of IgG aggregates by the myeloperoxidase-hydrogen peroxide system. J. Immunol. 1983; 130: 1918–1923
  • Lunec J., Blake D. R., McCleary S. J., Brailsford S., Bacon P. A. Self-perpetuating mechanisms of immunoglobulin G aggregation in rheumatoid inflammation. J. Clin. Invest. 1985; 76: 2084–2090
  • Carp H., Miller F., Hoidal J. R., Janoff A. Potential mechanism of emphysema: Alpha 1-proteinase inhibitor recovered from lungs of cigarette smokers contains oxidized methionine and has decreased elastase inhibitory capacity. Proc. Natl. Acad. Sci. USA 1982; 79: 2041–2045
  • Matheson N. R., Wong P. S., Travis J. Enzymatic inactivation of human alpha-1-proteinase inhibitor by neutrophil myeloperoxidase. Biochem. Biophys. Res. Commun. 1979; 88: 402–409
  • Esterbauer H., Striegl G., Puhl H., Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radical Res. Commun. 1989; 6: 67–75
  • Uchida K., Kanematsu M., Sakai K., Matsuda T., Hattori N., Mizuno Y., Suzuki D., Miyata T., Noguchi N., Niki E., Osawa T. Protein-bound acrolein: Potential markers for oxidative stress. Proc. Natl. Acad. Sci. USA 1998; 95: 4882–4887
  • Hazell L. J., Stocker R. Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochem. J. 1993; 290: 165–172
  • Leewenburgh C., Rasmussen J. E., Hsu F. F., Mueller D. M., Pennathur S., Heinecke J. W. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J. Biol. Chem. 1998; 272: 3520–3526
  • Yang C. Y., Gu Z. W., Yang H. X., Yang M., Gotto A. M., Jr., Smith C. V. Oxidative modifications of apoB-100 by exposure of low density lipoproteins to HOCl in vitro. Free Radical Biol. Med. 1997; 23: 82–89
  • Palinski W., Rosenfeld M. E., Yla-Herttuala S, Gurtner G. C., Socher S. S., Butler S. W., Parthasarathy S., Carew T. E., Steinberg D., Witztum J. L. Low density lipoprotein undergoes oxidative modification in vivo. Proc. Natl. Acad. Sci. USA 1989; 86: 1372–1376
  • Hazell L. J., Arnold L, Flowers D., Waeg G, Malle E, Stocker R. Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J. Clin. Invest. 1996; 97: 1535–1544
  • Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Modifications of low-density lipoprotein that increase its atherogenecity. N. Engl. J. Med. 1989; 320: 915–924
  • Garland D. Role of site-specific, metal-catalyzed oxidation in lens aging and cataract: A hypothesis. Exp. Eye Res. 1990; 50: 677–682
  • Davies K. J. A. Protein oxidation and proteolytic degradation. General aspects and relationship to cataract formation. Adv. Exp. Med. Biol. 1990; 264: 503–511
  • Murakami K., Jahngen J. H., Lin S. W., Davies K. J., Taylor A. Lens proteasome shows enhanced rates of degradation of hydroxyl radical modified alpha-crystallin. Free Radical Biol. Med. 1990; 8: 217–222
  • Fu S., Dean R., Southan M., Truscott R. The hydroxyl radical in lens nuclear cataractogenesis. J. Biol. Chem. 1998; 273: 28,603–28,609
  • Moskovitz J., Berlett B. S., Poston J. M., Stadtman E. R. Methionine sulfoxide reductase in antioxidant defense. Methods Enzymol. 1999; 300: 239–244
  • Sahakian J. A., Szweda L. I., Friguet B., Kitani K, Levine R. L. Aging of the liver: Proteolysis of oxidatively modified glutamine synthetase. Arch. Biochem. Biophys. 1995; 318: 411–417
  • Rivett A. J., Roseman J. E., Oliver C. N., Levine R. L., Stadtman E. R. Covalent modification of proteins by mixed-function oxidation: Recognition by intracellular proteases. Prog. Clin. Biol. Res. 1985; 180: 317–328
  • Shacter E. Protein oxidative damage. Methods Enzymol. 2000; 319: 428–436
  • Evans P., Lyras L., Halliwell B. Measurement of protein carbonyls in human brain tissue. Methods Enzymol. 1999; 300: 145–156
  • Silvester J. A., Timmins G. S., Davies M. J. Protein hydroperoxides and carbonyl groups generated by porphyrin-induced photo-oxidation of bovine serum albumin. Arch. Biochem. Biophys. 1998; 350: 249–258
  • Levine R. L., Garland D., Oliver C. N., Amici A, Climent I, Lenz A., Ahn B., Shaltiel S, Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990; 186: 464–478
  • Levine R. L., Williams J., Stadtman E. R., Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994; 233: 346–357
  • Buss H., Chan T. P., Sluis K. B., Domigan N. M., Winterbourn C. C. Protein carbonyl measurement by a sensitive ELISA method. Free Radical Biol. Med. 1997; 23: 361–366
  • Robinson C. E., Kashavarzian A., Pasco D. S., Frommel T. O., Winshop D. H., Holmes E. W. Determination of protein carbonyl groups by immunoblotting. Anal. Biochem. 1999; 266: 48–57
  • Smith M. A., Sayre L. M., Anderson V. E., Harris P. L. R., Beal M. F., Kowall N., Perry G. Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J. Histochem. Cytochem. 1998; 46: 731–735
  • Shacter E., Williams J. A., Lim M., Levine R. L. Differential susceptibility of plasma proteins to oxidative modification. Examination by Western blot immunoassay. Free Radical Biol. Med. 1994; 17: 429–437
  • Keller R. J., Halmes N. C., Hinson J. A., Pumford N. R. Immunochemical detection of oxidized proteins. Chem. Res. Toxicol. 1993; 6: 430–433
  • Yan L. J., Orr W. C., Sohal R. S. Identification of oxidized proteins based on sodium dodecyl sulfate–polyacrylamide gel electrophoresis, immunochemical detection, isoelectric focusing, and microsequencing. Anal. Biochem. 1998; 263: 67–71
  • Nakamura A., Goto S. Analysis of protein carbonyls with 2,4-dinitrophenyl hydrazine and its antibodies by immunoblot in two-dimensional gel electrophoresis. J. Biochem. 1996; 119: 768–774
  • Shacter E., Williams J. A., Stadtman E. R., Levine R. L. Determination of carbonyl groups in oxidized proteins. Free Radicals: A Practical Approach, N. Punchard, F. Kelly. Oxford University Press, Oxford 1994; 159–170
  • Lee Y-J, Shacter E. Role of carbohydrates in oxidative modification of fibrinogen and other plasma proteins. Arch. Biochem. Biophys. 1995; 321: 175–181
  • Lenz A., Costabel U., Shaltiel S., Levine R. L. Determination of carbonyl groups in oxidatively modified proteins by reduction with tritiated sodium borohydride. Anal. Biochem. 1989; 177: 419–425
  • Yan L. J., Sohal R. S. Gel electrophoretic quantitation of protein carbonyls derivatized with tritiated sodium borohydride. Anal. Biochem. 1998; 265: 176–182
  • Waeg G., Dimsity G., Esterbauer H. Monoclonal antibodies for detection of 4-hydroxynonenal modified proteins. Free Radical Res. 1996; 25: 149–159
  • Gieseg S. P., Simpson J. A., Charlton T. S., Duncan M. W., Dean R. T. Protein-bound 3,4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins. Biochemistry 1993; 32: 4780–4786
  • Kettle A. J. Detection of 3-chlorotyrosine in proteins exposed to neutrophil oxidants. Methods Enzymol. 1999; 300: 111–120
  • Maier K. L., Lenz A. G., Beck-Speier I., Costabel U. Analysis of methionine sulfoxide in proteins. Methods Enzymol. 1995; 251: 455–461
  • Levine R. L., Mosoni L., Berlett B. S., Stadtman E. R. Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. USA 1996; 93: 15,036–15,040
  • Morrow J. D., Chen Y., Brame C. J., Yang J., Sanchez S. C., Xu J., Zackert W. E., Awad J. A., Roberts L. J. The isoprostanes: Unique prostaglandin-like products of free-radical-initiated lipid peroxidation. Drug Metab. Rev. 1999; 31: 117–139
  • Shigenaga M. K., Aboujaoude E. N., Chen Q., Ames B. N. Assays of oxidative DNA damage biomarkers 8-oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high-performance liquid chromatography with electrochemical detection. Methods Enzymol. 1994; 234: 16–33
  • Levine R. L., Ciolino H. P. Modification of proteins in endothelial cell death during oxidative stress. Free Radical Biol. Med. 1997; 22: 1277–1282
  • Hazen S. L., Hsu F. F., Gaut J. P., Crowley J. R., Heinecke J. W. Modification of proteins and lipids by myeloperoxidase. Methods Enzymol. 1999; 300: 88–105
  • Beckman J. S., Koppenol W. H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am. J. Physiol. 1996; 271: C1424–C1437
  • Reddy V. Y., Desorchers P. E., Pizzo S. V., Gonias S. L., Sahakian J. A., Levine R. L., Weiss S. J. Oxidative dissociation of human alpha 2-macroglobulin tetramers into dysfunctional dimers. J. Biol. Chem. 1994; 269: 4683–4691
  • Gitlin G., Tsarbopoulos A., Patel S. T., Sydor W., Pramanik B. N., Jacobs S., Westreich L., Mittelman S., Bausch J. N. Isolation and characterization of a monomethioninesulfoxide variant of interferon alpha-2b. Pharm. Res. 1996; 13: 762–769
  • Birnboim H. C. DNA strand breaks in human leukocytes induced by superoxide anion, hydrogen peroxide and tumor promoters are repaired slowly compared to breaks induced by ionizing radiation. Carcinogenesis 1986; 7: 1511–1517
  • Shacter E., Beecham E. J., Covey J. M., Kohn K. W., Potter M. Activated neutrophils induce prolonged DNA damage in neighboring cells. Carcinogenesis 1988; 9: 2297–2304
  • Frenkel K., Chrzan K., Troll W., Teebor G. W., Steinberg J. J. Radiation-like modification of bases in DNA exposed to tumor promoter-activated polymorphonuclear leukocytes. Cancer Res. 1986; 46: 5533–5540
  • Chen W., Yewdell J. W., Levine R. L., Bennink J. R. Modification of cysteine residues in vitro and in vivo affects the immunogenicity and antigenicity of major histocompatibility complex class I-restricted viral determinants. J. Exp. Med. 1999; 189: 1757–1764
  • Berti P. J., Ekiel I., Lindahl P., Abrahamson M., Storer A. C. Affinity purification and elimination of methionine oxidation in recombinant human cystatin C. Protein Exp. Purif. 1997; 11: 111–118
  • Olson C. V., Reifsnyder D. H., Canova-Davis E., Ling V. T., Builder S. E. Preparative isolation of recombinant human insulin-like growth factor 1 by reversed-phase high-performance liquid chromatography. J. Chromatog. A 1994; 675: 101–112
  • Hsu Y. R., Narhi L. O., Spahr C., Langley K. E., Lu H. S. In vitro methionine oxidation of Escherichia coli-derived human stem cell factor: Effects on the molecular structure, biological activity, and dimerization. Protein Sci. 1996; 5: 1165–1173
  • Kornfelt T., Persson E., Palm L. Oxidation of methionine residues in coagulation factor VIIa. Arch. Biochem. Biophys. 1999; 363: 43–54
  • Davis D. A., Dorsey K., Wingfield P. T., Stahl S. J., Kaufman J., Fales H. M., Levine R. L. Regulation of HIV-1 protease activity through cysteine modification. Biochemistry 1996; 35: 2482–2488
  • Thomas J. A., Chai Y-C., Jung C-H. Protein S-thiolation and dethiolation. Methods Enzymol. 1994; 233: 385–395
  • Smith M. A., Harris P. L. R., Sayre L. M., Beckman J. S., Perry G. Widespread peroxynitrite-mediated damage in Alzheimerapos;s disease. J. Neurosci. 1997; 17: 2653–2657
  • Ye Y. Z., Strong M., Huang Z. Q., Beckman J. S. Antibodies that recognize nitrotyrosine. Methods Enzymol. 1996; 269: 201–209
  • Ischiropoulos H., Zhu L., Chen J., Tsai M, Martin J. C., Smith C. D., Beckman J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 1992; 298: 431–437
  • Eiserich J. P., Cross C. E., Jones A. D., Halliwell B., Van der Vliet A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. J. Biol. Chem. 1996; 271: 19,199–19,208
  • Shigenaga M. K., Lee H. H., Blount B. C., Shigeno E. T., Yip H., Ames B. N. Inflammation and NO(X)-induced nitration: assay for 3-nitrotyrosine by HPLC with electrochemical detection. Proc. Natl. Acad. Sci. USA 1997; 94: 3211–3216
  • Finley E. L., Dillon J, Crouch R. K., Schey K. L. Identification of tryptophan oxidation products in bovine alpha-crystallin. Protein Sci. 1998; 7: 2391–2397
  • Davies K. J. A., Delsignore M. E. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J. Biol. Chem. 1987; 262: 9908–9913
  • Pacifici R. E., Davies K. J. A. Protein degradation as an index of oxidative stress. Methods Enzymol. 1990; 186: 485–502

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.