366
Views
53
CrossRef citations to date
0
Altmetric
Research Article

STRUCTURAL BIOLOGY AND FUNCTION OF SOLUTE TRANSPORTERS: IMPLICATIONS FOR IDENTIFYING AND DESIGNING SUBSTRATES

, , &
Pages 709-750 | Published online: 27 Nov 2002

REFERENCES

  • Kramer W., Wess G. Bile Acid Transport Systems as Pharmaceutical Targets. Eur. J. Clin. Investig. 1996; 26: 715–732
  • Tollefson M.B., Vernier W.F., Huang H.C., Chen F.P., Reinhard E.J., Beaudry J., Keller B.T., Reitz D.B. A Novel Class of Apical Sodium Co-dependent Bile Acid Transporter Inhibitors: The 2,3-Disubstituted-4-phenylquinolines. Bioorg. Med. Chem. Lett. 2000; 10: 277–279
  • Wess G., Kramer W., Enhsen A., Glombik H., Baringhaus K.H., Boger G., Urmann M., Bock K., Kleine H., Neckermann G., Hoffmann A., Pittius C., Falk E., Fehlhaber H.W., Kogler H., Friedrich M. Specific Inhibitors of Ileal Bile Acid Transport. J. Med. Chem. 1994; 37: 873–875
  • Hediger M.A., Coady M.J., Ikeda T.S., Wright E.M. Expression Cloning and cDNA Sequencing of the Na+/Glucose Co-transporter. Nature 1987; 330: 379–381
  • Hediger M.A., Ikeda T., Coady M., Gundersen C.B., Wright E.M. Expression of Size-Selected mRNA Encoding the Intestinal Na/Glucose Cotransporter in Xenopus laevis Oocytes. Proc. Natl Acad. Sci. USA 1987; 84: 2634–2637
  • Saier M.H., Jr. Eukaryotic Transmembrane Solute Transport Systems. Int. Rev. Cytol. 1999; 190: 61–136
  • Paulsen I.T., Sliwinski M.K., Nelissen B., Goffeau A., Saier M.H., Jr. Unified Inventory of Established and Putative Transporters Encoded Within the Complete Genome of Saccharomyces cerevisiae. FEBS Lett. 1998; 430: 116–125
  • Paulsen I.T., Sliwinski M.K., Saier M.H., Jr. Microbial Genome Analyses: Global Comparisons of Transport Capabilities Based on Phylogenies, Bioenergetics and Substrate Specificities. J. Mol. Biol. 1998; 277: 573–592
  • Schuler G.D., Boguski M.S., Stewart E.A., Stein L.D., Gyapay G., Rice K., White R.E., Rodriguez-Tome P., Aggarwal A., Bajorek E., Bentolila S., Birren B.B., Butler A., Castle A.B., Chiannilkulchai N., Chu A., Clee C., Cowles S., Day P.J.R., Dibling T., Drouot N., Dunham I., Duprat S., East C., Edwards C., Fan J.-B., Fang N., Fizames C., Garrett C., Green L., Hadley D., Harris M., Harrison P., Brady S., Hicks A., Holloway E., Hui L., Hussain S., Louis-Dit-Sully C., Ma J., MacGilvery A., Mader C., Maratukulam A., Matise T.C., McKusick K.B., Morissette J., Mungall A., Muselet D., Nusbaum H.C., Page D.C., Peck A., Perkins S., Piercy M., Qin F., Quackenbush J., Ranby S., Reif T., Rozen S., Sanders C., She X., Silva J., Slonim D.K., Soderlund C., Sun W.-L., Taber P., Thangarajah T., Vega-Czarny N., Vollrath D., Voyticky S., Wilmer T., Wu X., Adams M.D., Aufiray C., Walter N.A.R., Brandon R., Dehejia A., Goodfellow P.N., Houlgatte R., Hudson J.R., Jr., Ide S.E., Iorio K.R., Lee W.Y., Seki N., Nagase T., Ishikawa K., Nomura N., Phillips C., Polymeropoulos M.H., Sandusky M., Schmitt K., Berry R., Swanson K., Torres R., Venter J.C., Sikela J.M., Beckmann J.S., Weissenbach J., Myers R.M., Cox D.R., James M.R., Bentley D., Deloukas P., Lander E.S., Hudson T.J. A Gene Map of the Human Genome. Science 1996; 274: 540–546
  • Swaan P.W., Oie S., Szoka F.C., Jr. Carrier-Mediated Oral Drug Delivery. Adv. Drug Delivery Rev. 1996; 20: 1–4
  • Adibi S.A. The Oligopeptide Transporter (Pept-1) in Human Intestine: Biology and Function. Gastroenterology 1997; 113: 332–340
  • Bradshaw D.M., Arceci R.J. Clinical Relevance of Transmembrane Drug Efflux as a Mechanism of Multidrug Resistance. J. Clin. Oncol. 1998; 16: 3674–3690
  • Krishan A., Fitz C.M., Andritsch I. Drug Retention, Efflux, and Resistance in Tumor Cells. Cytometry 1997; 29: 279–285
  • Berndt W.O. The Role of Transport in Chemical Nephrotoxicity. Toxicol. Pathol. 1998; 26: 52–57
  • Owens M.J., Nemeroff C.B. The Serotonin Transporter and Depression. Depress. Anxiety 1998; 8: 5–12
  • Reith M.E., Xu C., Chen N.H. Pharmacology and Regulation of the Neuronal Dopamine Transporter. Eur. J. Pharmacol. 1997; 324: 1–10
  • Baly D.L., Horuk R. The Biology and Biochemistry of the Glucose Transporter. Biochim. Biophys. Acta 1988; 947: 571–590
  • Wright E.M., Turk E., Zabel B., Mundlos S., Dyer J. Molecular Genetics of Intestinal Glucose Transport. J. Clin. Investig. 1991; 88: 1435–1440
  • Wong M.H., Oelkers P., Dawson P.A. Identification of a Mutation in the Ileal Sodium-Dependent Bile Acid Transporter Gene That Abolishes Transport Activity. J. Biol. Chem. 1995; 270: 27228–27234
  • Deisenhofer J., Michel H. High-Resolution Structures of Photosynthetic Reaction Centers. Annu. Rev. Biophys. Biophys. Chem. 1991; 20: 247–266
  • Deisenhofer J., Michel H. Structures of Bacterial Photosynthetic Reaction Centers. Annu. Rev. Cell Biol. 1991; 7: 1–23
  • Unwin N. Acetylcholine Receptor Channel Imaged in the Open State. Nature 1995; 373: 37–43
  • Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8 A. Science 1996; 272: 1136–1144
  • Kaback H.R., Voss J., Wu J. Helix Packing in Polytopic Membrane Proteins: The Lactose Permease of Escherichia coli. Curr. Opin. Struct. Biol. 1997; 7: 537–542
  • Goswitz V.C., Brooker R.J. Structural Features of the Uniporter/Symporter/Antiporter Superfamily. Protein Sci. 1995; 4: 534–537
  • Varela M.F., Wilson T.H. Molecular Biology of the Lactose Carrier of Escherichia coli. Biochim. Biophys. Acta 1996; 1276: 21–34
  • Doolittle R.F., Johnson M.S., Husain I., Van Houten B., Thomas D.C., Sancar A. Domainal Evolution of a Prokaryotic DNA Repair Protein and Its Relationship to Active-Transport Proteins. Nature 1986; 323: 451–453
  • Voss J., Wu J., Hubbell W.L., Jacques V., Meares C.F., Kaback H.R. Helix Packing in the Lactose Permease of Escherichia coli: Distances Between Site-Directed Nitroxides and a Lanthanide. Biochemistry 2001; 40: 3184–3188
  • Wang Q., Kaback H.R. Location of Helix III in the Lactose Permease of Escherichia coli as Determined by Site-Directed Thiol Cross-Linking. Biochemistry 1999; 38: 16777–16782
  • Wolin C.D., Kaback H.R. Estimating Loop-Helix Interfaces in a Polytopic Membrane Protein by Deletion Analysis. Biochemistry 1999; 38: 8590–8597
  • Zhuang J., Prive G.G., Werner G.E., Ringler P., Kaback H.R., Engel A. Two-Dimensional Crystallization of Escherichia coli Lactose Permease. J. Struct. Biol. 1999; 125: 63–75
  • Wang Q., Kaback H.R. Helix Packing in the Lactose Permease of Escherichia coli Determined by Site-Directed Thiol Cross-Linking: Helix I Is Close to Helices V and XI. Biochemistry 1999; 38: 3120–3126
  • le Coutre J., Kaback H.R., Patel C.K., Heginbotham L., Miller C. Fourier Transform Infrared Spectroscopy Reveals a Rigid Alpha-Helical Assembly for the Tetrameric Streptomyces lividans K+ Channel. Proc. Natl Acad. Sci. USA 1998; 95: 6114–6117
  • Voss J., Hubbell W.L., Hernandez-Borrell J., Kaback H.R. Site-Directed Spin-Labeling of Transmembrane Domain VII and the 4B1 Antibody Epitope in the Lactose Permease of Escherichia coli. Biochemistry 1997; 36: 15055–15061
  • Braun P., Persson B., Kaback H.R., von Heijne G. Alanine Insertion Scanning Mutagenesis of Lactose Permease Transmembrane Helices. J. Biol. Chem. 1997; 272: 29566–29571
  • Claros M.G., von Heijne G. TopPred II: An Improved Software for Membrane Protein Structure Predictions. Comput. Appl. Biosci. 1994; 10: 685–686
  • Rost B., Fariselli P., Casadio R. Topology Prediction for Helical Transmembrane Proteins at 86% Accuracy. Protein Sci. 1996; 5: 1704–1718
  • Tusnady G.E., Simon I. Principles Governing Amino Acid Composition of Integral Membrane Proteins: Application to Topology Prediction. J. Mol. Biol. 1998; 283: 489–506
  • Bamberg K., Sachs G. Topological Analysis of H+K+-ATPase Using In Vitro Translation. J. Biol. Chem. 1994; 269: 16909–16919
  • Frillingos S., Sahin-Toth M., Wu J., Kaback H.R. Cys-scanning Mutagenesis: A Novel Approach to Structure Function Relationships in Polytopic Membrane Proteins. FASEB J. 1998; 12: 1281–1299
  • Frillingos S., Ujwal M.L., Sun J., Kaback H.R. The Role of Helix VIII in the Lactose Permease of Escherichia coli: I. Cys-Scanning Mutagenesis. Protein Sci. 1997; 6: 431–437
  • Turk E., Kerner C.J., Lostao M.P., Wright E.M. Membrane Topology of the Human Na+/Glucose Cotransporter SGLT1. J. Biol. Chem. 1996; 271: 1925–1934
  • Bennett E.R., Kanner B.I. The Membrane Topology of GAT-1, a (Na+ + Cl−)-Coupled Gamma-Aminobutyric Acid Transporter from Rat Brain. J. Biol. Chem. 1997; 272: 1203–1210
  • Covitz K.M., Amidon G.L., Sadee W. Membrane Topology of the Human Dipeptide Transporter, hPEPT1, Determined by Epitope Insertions. Biochemistry 1998; 37: 15214–15221
  • Zhao M., Zen K.C., Hubbell W.L., Kaback H.R. Proximity Between Glu126 and Arg144 in the Lactose Permease of Escherichia coli. Biochemistry 1999; 38: 7407–7412
  • Wang Q., Voss J., Hubbell W.L., Kaback H.R. Proximity of Helices VIII (Ala273) and IX (Met299) in the Lactose Permease of Escherichia coli. Biochemistry 1998; 37: 4910–4915
  • Jung K., Jung H., Kaback H.R. Dynamics of Lactose Permease of Escherichia coli Determined by Site-Directed Fluorescence Labeling. Biochemistry 1994; 33: 3980–3985
  • Jung K., Jung H., Wu J., Prive G.G., Kaback H.R. Use of Site-Directed Fluorescence Labeling to Study Proximity Relationships in the Lactose Permease of Escherichia coli. Biochemistry 1993; 32: 12273–12278
  • Hresko R.C., Murata H., Marshall B.A., Mueckler M. Discrete Structural Domains Determine Differential Endoplasmic Reticulum to Golgi Transit Times for Glucose Transporter Isoforms. J. Biol. Chem. 1994; 269: 32110–32119
  • Nagai K., Thogersen H.C. Generation of Beta-Globin by Sequence-Specific Proteolysis of a Hybrid Protein Produced in Escherichia coli. Nature 1984; 309: 810–812
  • Sahin-Toth M., Dunten R.L., Kaback H.R. Design of a Membrane Protein for Site-Specific Proteolysis: Properties of Engineered Factor Xa Protease Sites in the Lactose Permease of Escherichia coli. Biochemistry 1995; 34: 1107–1112
  • Grimble G.K., Silk D.B.A. Peptides in Human Nutrition. Nutr. Res. Rev. 1989; 2: 87–108
  • Mathews D.M., Adibi S.A. Peptide Absorption. Gastroenterology 1976; 71: 151–161
  • Adibi S.A. Experimental Basis for Use of Peptides as Substrates for Parenteral Nutrition: A Review. Metabolism 1987; 36: 1001–1011
  • Furst P., Albers S., Stehle P. Dipeptides in Clinical Nutrition. Proc. Nutr. Soc. 1990; 49: 343–359
  • Grimble G.K. The Significance of Peptides in Clinical Nutrition. Annu. Rev. Nutr. 1994; 14: 419–447
  • Snyder N.J., Tabas L.B., Berry D.M., Duckworth D.C., Spry D.O., Dantzig A.H. Structure–Activity Relationship of Carbacephalosporins and Cephalosporins: Antibacterial Activity and Interaction with the Intestinal Proton-Dependent Dipeptide Transport Carrier of Caco-2 Cells. Antimicrob. Agents Chemother. 1997; 41: 1649–1657
  • Jiang, H.; Tabas, L.B.; Dantzig, A.H. Interaction of β-Lactam Antibiotics with the Human Intestinal Peptide Transporter, hPEPT1, submitted for publication.
  • Moore V.A., Irwin W.J., Timmins P., Lambert P.A., Chong S., Dando S.A., Morrison R.A. A Rapid Screening System to Determine Drug Affinities for the Intestinal Dipeptide Transporter 2: Affinities of ACE Inhibitors. Int. J. Pharm. 2000; 210: 29–44
  • Leibach F.H., Ganapathy V. Peptide Transporters in the Intestine and the Kidney. Annu. Rev. Nutr. 1996; 16: 99–119
  • Han H.K., Rhie J.K., Oh D.M., Saito G., Hsu C.P., Stewart B.H., Amidon G.L. CHO/hPEPT1 Cells Overexpressing the Human Peptide Transporter (hPEPT1) as an Alternative In Vitro Model for Peptidomimetic Drugs. J. Pharm. Sci. 1999; 88: 347–350
  • Covitz K.M., Amidon G.L., Sadee W. Human Dipeptide Transporter, hPEPT1, Stably Transfected Into Chinese Hamster Ovary Cells. Pharm. Res. 1996; 13: 1631–1634
  • Kim J.S., Oberle R.L., Krummel D.A., Dressman J.B., Fleisher D. Absorption of ACE Inhibitors from Small Intestine and Colon. J. Pharm. Sci. 1994; 83: 1350–1356
  • Bai J.P., Amidon G.L. Structural Specificity of Mucosal-Cell Transport and Metabolism of Peptide Drugs: Implication for Oral Peptide Drug Delivery. Pharm. Res. 1992; 9: 969–978
  • Hu M., Subramanian P., Mosberg H.I., Amidon G.L. Use of the Peptide Carrier System to Improve the Intestinal Absorption of L-Alpha-Methyldopa: Carrier Kinetics, Intestinal Permeabilities, and In Vitro Hydrolysis of Dipeptidyl Derivatives of L-Alpha-Methyldopa. Pharm. Res. 1989; 6: 66–70
  • Oh D.M., Han H.K., Amidon G.L. Drug Transport and Targeting. Intestinal Transport. Pharm. Biotechnol. 1999; 12: 59–88
  • Boll M., Markovich D., Weber W.M., Korte H., Daniel H., Murer H. Expression Cloning of a cDNA from Rabbit Small Intestine Related to Proton-Coupled Transport of Peptides, Beta-Lactam Antibiotics and ACE-Inhibitors. Pflugers Arch. 1994; 429: 146–149
  • Ganapathy M.E., Brandsch M., Prasad P.D., Ganapathy V., Leibach F.H. Differential Recognition of Beta-Lactam Antibiotics by Intestinal and Renal Peptide Transporters, PEPT 1 and PEPT 2. J. Biol. Chem. 1995; 270: 25672–25677
  • Ganapathy M.E., Huang W., Wang H., Ganapathy V., Leibach F.H. Valacyclovir: A Substrate for the Intestinal and Renal Peptide Transporters PEPT1 and PEPT2. Biochem. Biophys. Res. Commun. 1998; 246: 470–475
  • Shen H., Smith D.E., Yang T., Huang Y.G., Schnermann J.B., Brosius F.C., III. Localization of PEPT1 and PEPT2 Proton-Coupled Oligopeptide Transporter mRNA and Protein in Rat Kidney. Am. J. Physiol. 1999; 276: F658–F665
  • Ogihara H., Suzuki T., Nagamachi Y., Inui K., Takata K. Peptide Transporter in the Rat Small Intestine: Ultrastructural Localization and the Effect of Starvation and Administration of Amino Acids. Histochem. J. 1999; 31: 169–174
  • Steiner H.Y., Naider F., Becker J.M. The PTR Family: A New Group of Peptide Transporters. Mol. Microbiol. 1995; 16: 825–834
  • Meredith D., Boyd C.A. Structure and Function of Eukaryotic Peptide Transporters. Cell Mol. Life Sci. 2000; 57: 754–778
  • Fei Y.J., Ganapathy V., Leibach F.H. Molecular and Structural Features of the Proton-Coupled Oligopeptide Transporter Superfamily. Prog. Nucleic Acid Res. Mol. Biol. 1998; 58: 239–261
  • Nussberger S., Steel A., Trotti D., Romero M.F., Boron W.F., Hediger M.A. Symmetry of H+ Binding to the Intra- and Extracellular Side of the H+-Coupled Oligopeptide Cotransporter PepT1. J. Biol. Chem. 1997; 272: 7777–7785
  • Swaan P.W., Tukker J.J. Essential Molecular Requirements for Carrier-Mediated Peptide Transport. Pharm. Weekbl. Sci. Ed. 1992; 14F: 62
  • Swaan P.W., Tukker J.J. Binding Site Mapping of the Intestinal Peptide Carrier. Pharm. Weekbl. Sci. Ed. 1992; 14M: 4
  • Tukker J.J., Swaan P.W. Molecular Features Essential for Active Peptide Transport. Pharm. Res. 1992; 9: S-180
  • Humblet C., Marshall G.R. Pharmacophore Identification and Receptor Mapping. Ann. Rep. Med. Chem. 1980; 15: 267–276
  • Li J., Hidalgo I.J. Molecular Modeling Study of Structural Requirements for the Oligopeptide Transporter. J. Drug Target 1996; 4: 9–17
  • Swaan P.W., Tukker J.J. Molecular Determinants of Recognition for the Intestinal Peptide Carrier. J. Pharm. Sci. 1997; 86: 596–602
  • Swaan P.W., Stehouwer M.C., Tukker J.J. Molecular Mechanism for the Relative Binding Affinity to the Intestinal Peptide Carrier. Comparison of Three ACE-Inhibitors: Enalapril, Enalaprilat, and Lisinopril. Biochim. Biophys. Acta 1995; 1236: 31–38
  • Kubo S.H., Cody R.J. Clinical Pharmacokinetics of the Angiotensin Converting Enzyme Inhibitors. A Review. Clin. Pharmacokinet. 1985; 10: 377–391
  • Swaan P.W., Koops B.C., Moret E.E., Tukker J.J. Mapping the Binding Site of the Small Intestinal Peptide Carrier (PepT1) Using Comparative Molecular Field Analysis. Recept. Channels 1998; 6: 189–200
  • Doring F., Will J., Amasheh S., Clauss W., Ahlbrecht H., Daniel H. Minimal Molecular Determinants of Substrates for Recognition by the Intestinal Peptide Transporter. J. Biol. Chem. 1998; 273: 23211–23218
  • Terada T., Sawada K., Irie M., Saito H., Hashimoto Y., Inui K. Structural Requirements for Determining the Substrate Affinity of Peptide Transporters PEPT1 and PEPT2. Pflugers Arch. 2000; 440: 679–684
  • Bailey P.D., Boyd C.A.R., Bronk J.R., Collier I.D., Meredith D., Morgan K.M., Temple C.S. How to Make Drugs Orally Active: A Substrate Template for Peptide Transporter PepT1. Angew. Chem. Int. Ed. 2000; 39: 506–508
  • Bretschneider B., Brandsch M., Neubert R. Intestinal Transport of Beta-Lactam Antibiotics: Analysis of the Affinity at the H+/Peptide Symporter (PEPT1), the Uptake Into Caco-2 Cell Monolayers and the Transepithelial Flux. Pharm. Res. 1999; 16: 55–61
  • Bolger M.B., Haworth I.S., Yeung A.K., Ann D., von Grafenstein H., Hamm-Alvarez S., Okamoto C.T., Kim K.J., Basu S.K., Wu S., Lee V.H. Structure, Function, and Molecular Modeling Approaches to the Study of the Intestinal Dipeptide Transporter PepT1. J. Pharm. Sci. 1998; 87: 1286–1291
  • Chen X.Z., Steel A., Hediger M.A. Functional Roles of Histidine and Tyrosine Residues in the H+-Peptide Transporter PepT1. Biochem. Biophys. Res. Commun. 2000; 272: 726–730
  • Botka C.W., Witting T.W., Graul R.C., Nielsen C.U., Sadée W., Higaki K., Amidon G.L. Human Proton/Oligopeptide Transporter (POT) Genes: Identification of Putative Human Genes Using Bioinformatics. AAPS PharmSci 2000; 1–22
  • Graul R.C., Sadee W. Sequence Alignments of the H(+)-Dependent Oligopeptide Transporter Family PTR: Inferences on Structure and Function of the Intestinal PET1 Transporter. Pharm. Res. 1997; 14: 388–400
  • Yamashita T., Shimada S., Guo W., Sato K., Kohmura E., Hayakawa T., Takagi T., Tohyama M. Cloning and Functional Expression of a Brain Peptide/Histidine Transporter. J. Biol. Chem. 1997; 272: 10205–10211
  • Herrera-Ruiz, D.; Gudmundsson, O.S.; Knipp, G.T. Patterns of Gene Expression of a Novel Peptide Oligopeptide Transporter in Rat and Human Tissues, Pharmaceutical Congress of the Americas Orlando, FL, 2001.
  • Dantzig A.H., Hoskins J.A., Tabas L.B., Bright S., Shepard R.L., Jenkins I.L., Duckworth D.C., Sportsman J.R., Mackensen D., Rosteck P.R., Jr., Skatrud P.L. Association of Intestinal Peptide Transport with a Protein Related to the Cadherin Superfamily. Science 1994; 264: 430–433
  • Buchwald H., Stoller D.K., Campos C.T., Matts J.P., Varco R.L. Partial Ileal Bypass for Hypercholesterolemia. 20- to 26-Year Follow-Up of the First 57 Consecutive Cases. Ann. Surg. 1990; 212: 318–329, Discussion 329–331
  • Ast M., Frishman W.H. Bile Acid Sequestrants. J. Clin. Pharmacol. 1990; 30: 99–106
  • Takashima K., Kohno T., Mori T., Ohtani A., Hirakoso K., Takeyama S. The Hypocholesterolemic Action of TA-7552 and Its Effects on Cholesterol Metabolism in the Rat. Atherosclerosis 1994; 107: 247–257
  • Carey M.D., Small D.M., Bliss C.M. Lipid Digestion and Absorption. Annu. Rev. Physiol. 1983; 45: 651–677
  • Wilson F.A. Intestinal Transport of Bile Acids. The Gastrointestinal System. IV., S.G. Schultz, M. Field, R.A. Frizzell. American Physiological Society, Bethesda, MD 1991; 389–404
  • Dowling R.H. The Enterohepatic Circulation. Gastroenterology 1972; 62: 122–140
  • Hofmann A.F. The Enterohepatic Circulation of Bile Acids in Man. Adv. Intern. Med. 1976; 21: 501–534
  • Ewerth S. On the Enterohepatic Circulation of Bile Acids in Man. Acta Chir. Scand. Suppl. 1982; 513: 1–38
  • Erlinger R.H. Physiology of Bile Secretion and Enterohepatic Circulation. Physiology of the Gastrointestinal Tract, L.R. Johnson. 2nd Ed., Raven Press, New York 1987; 1557–1580
  • Klaassen C.D. Intestinal and Hepatobiliary Disposition of Drugs. Toxicol. Pathol. 1988; 16: 130–137
  • Hofmann A.F. Enterohepatic Circulation of Bile Acids. The Gastrointestinal System. III., S. Schultz, J. Forte. American Physiological Society, Bethesda, MD 1989; 567–596
  • Stengelin S., Apel S., Becker W., Maier M., Rosenberger J., Bewersdorf U., Girbig F., Weyland C., Wess G., Kramer W. The Rabbit Ileal Lipid-Binding Protein. Gene Cloning and Functional Expression of the Recombinant Protein. Eur. J. Biochem. 1996; 239: 887–896
  • Vodenlich A.D., Gong Y.-Z., Geoghegan K.F., Lin M.C., Lanzetti A.J., Wilson F.A. Identification of the 14 kDa Bile Acid Transport Protein of Rat Ileal Cytosol as Gastrotropin. Biochem. Biophys. Res. Commun. 1991; 177: 1147–1154
  • Iseki S., Amano O., Kanda T., Fujii H., Ono T. Expression and Localization of Intestinal 15 kDa Protein in the Rat. Mol. Cell. Biochem. 1993; 123: 113–120
  • Kramer W., Corsiero D., Friedrich M., Girbig F., Stengelin S., Weyland C. Intestinal Absorption of Bile Acids: Paradoxical Behaviour of the 14 kDa Ileal Lipid-Binding Protein in Differential Photoaffinity Labelling. Biochem. J. 1998; 333: 335–341
  • Lin M.C., Kramer W., Wilson F.A. Identification of Cytosolic and Microsomal Bile Acid-Binding Proteins in Rat Ileal Enterocytes. J. Biol. Chem. 1990; 265: 14986–14995
  • Lin M.C., Mullady E., Wilson F.A. Timed Photoaffinity Labeling and Characterization of Bile Acid Binding and Transport Proteins in Rat Ileum. Am. J. Physiol. 1993; 265: G56–G62
  • Grober J., Zaghini I., Fujii H., Jones S.A., Kliewer S.A., Willson T.M., Ono T., Besnard P. Identification of a Bile Acid-Responsive Element in the Human Ileal Bile Acid-Binding Protein Gene. Involvement of the Farnesoid X Receptor/9-cis-Retinoic acid Receptor Heterodimer. J. Biol. Chem. 1999; 274: 29749–29754
  • Chiang J.Y., Kimmel R., Weinberger C., Stroup D. Farnesoid X Receptor Responds to Bile Acids and Represses Cholesterol 7Alpha-hydroxylase Gene (CYP7A1) Transcription. J. Biol. Chem. 2000; 275: 10918–10924
  • Crestani M., Sadeghpour A., Stroup D., Galli G., Chiang J.Y. Transcriptional Activation of the Cholesterol 7Alpha-hydroxylase Gene (CYP7A) by Nuclear Hormone Receptors. J. Lipid Res. 1998; 39: 2192–2200
  • Lehmann J.M., Kliewer S.A., Moore L.B., Smith-Oliver T.A., Oliver B.B., Su J.L., Sundseth S.S., Winegar D.A., Blanchard D.E., Spencer T.A., Willson T.M. Activation of the Nuclear Receptor LXR by Oxysterols Defines a New Hormone Response Pathway. J. Biol. Chem. 1997; 272: 3137–3140
  • Janowski B.A., Grogan M.J., Jones S.A., Wisely G.B., Kliewer S.A., Corey E.J., Mangelsdorf D.J. Structural Requirements of Ligands for the Oxysterol Liver X Receptors LXRalpha and LXRbeta. Proc. Natl Acad. Sci. USA 1999; 96: 266–271
  • Spencer T.A., Li D., Russel J.S., Collins J.L., Bledsoe R.K., Consler T.G., Moore L.B., Galardi C.M., McKee D.D., Moore J.T., Watson M.A., Parks D.J., Lambert M.H., Willson T.M. Pharmacophore Analysis of the Nuclear Oxysterol Receptor LXRalpha. J. Med. Chem. 2001; 44: 886–897
  • Lazaridis K.N., Pham L., Tietz P., Marinelli R.A., deGroen P.C., Levine S., Dawson P.A., LaRusso N.F. Rat Cholangiocytes Absorb Bile Acids at Their Apical Domain via the Ileal Sodium-Dependent Bile Acid Transporter. J. Clin. Investig. 1997; 100: 2714–2721
  • Sorscher S., Lillienau J., Meinkoth J.L., Steinbach J.H., Schteingart C.D., Feramisco J., Hofmann A.F. Conjugated Bile Acid Uptake by Xenopus laevis Oocytes Induced by Microinjection with Ileal Poly A+ mRNA. Biochem. Biophys. Res. Commun. 1992; 186: 1455–1462
  • Kramer W., Burckhardt G., Wilson F.A., Kurz G. Bile Salt-Binding Polypeptides in Brush-Border Membrane Vesicles from Rat Small Intestine Revealed by Photoaffinity Labeling. J. Biol. Chem. 1983; 258: 3623–3627
  • Lin M.C., Weinberg S.L., Kramer W., Burckhardt G., Wilson F.A. Identification and Comparison of Bile Acid-Binding Polypeptides in Ileal Basolateral Membrane. J. Membr. Biol. 1988; 106: 1–11
  • Burckhardt G., Kramer W., Kurz G., Wilson F.A. Inhibition of Bile Salt Transport in Brush-Border Membrane Vesicles from Rat Small Intestine by Photoaffinity Labeling. J. Biol. Chem. 1983; 258: 3618–3622
  • Shneider B.L., Moyer M.S. Characterization of Endogenous Carrier-Mediated Taurocholate Efflux from Xenopus laevis Oocytes. J. Biol. Chem. 1993; 268: 6985–6988
  • Shneider B.L., Dawson P.A., Christie D.-M., Hardikar W., Wong M.H., Suchy F.J. Cloning and Molecular Characterization of the Ontogeny of a Rat Ileal Sodium-Dependent Bile Acid Transporter. J. Clin. Investig. 1995; 95: 745–754
  • Weinman S.A., Carruth M.W., Dawson P.A. Bile Acid Uptake via the Human Apical Sodium-Bile Acid Cotransporter Is Electrogenic. J. Biol. Chem. 1998; 273: 34691–34695
  • Hallen S., Branden M., Dawson P.A., Sachs G. Membrane Insertion Scanning of the Human Ileal Sodium/Bile Acid Co-transporter. Biochemistry 1999; 38: 11379–11388
  • Sippel C.J., Dawson P.A., Shen T., Perlmutter D.H. Reconstitution of Bile Acid Transport in a Heterologous Cell by Cotransfection of Transporters for Bile Acid Uptake and Efflux. J. Biol. Chem. 1997; 272: 18290–18297
  • Wong M.H., Oelkers P., Craddock A.L., Dawson P.A. Expression Cloning and Characterization of the Hamster Ileal Sodium-Dependent Bile Acid Transporter. J. Biol. Chem. 1994; 269: 1340–1347
  • von Heijne G., Gavel Y. Topogenic Signals in Integral Membrane Proteins. Eur. J. Biochem. 1988; 174: 671–678
  • Higaki J., Hara S., Takasu N., Tonda K., Miyata K., Shike T., Nagata K., Mizui T. Inhibition of Ileal Na+/Bile Acid Cotransporter by S-8921 Reduces Serum Cholesterol and Prevents Atherosclerosis in Rabbits. Arterioscler. Thromb. Vasc. Biol. 1998; 18: 1304–1311
  • Ichihashi T., Izawa M., Miyata K., Mizui T., Hirano K., Takagishi Y. Mechanism of Hypocholesterolemic Action of S-8921 in Rats: S-8921 Inhibits Ileal Bile Acid Absorption. J. Pharmacol. Exp. Ther. 1998; 284: 43–50
  • Love M.W., Dawson P.A. New Insights Into Bile Acid Transport. Curr. Opin. Lipidol. 1998; 9: 225–229
  • Hofmann A.F. The Continuing Importance of Bile Acids in Liver and Intestinal Disease. Arch. Intern. Med. 1999; 159: 2647–2658
  • De Witt E.H., Lack L. Effects of Sulfation Patterns on Intestinal Transport of Bile Salt Sulfate Esters. Am. J. Physiol. 1980; 238: G34–G39
  • Lack L. Properties and Biological Significance of the Ileal Bile Salt Transport System. Environ. Health Perspect. 1979; 33: 79–90
  • Bundy R., Mauskopf J., Walker J.T., Lack L. Interaction of Uncharged Bile Salt Derivatives with the Ileal Bile Salt Transport System. J. Lipid Res. 1977; 18: 389–395
  • Gallagher K., Mauskopf J., Walker J.T., Lack L. Ionic Requirements for the Active Ileal Bile Salt Transport System. J. Lipid Res. 1976; 17: 572–577
  • Singletary W.V., Jr., Walker J.T., Lack L. Ileal Transport of Bile Acids Conjugated with Norleucine and Lysine. Biochim. Biophys. Acta 1972; 266: 238–245
  • Tyor M.P., Garbutt J.T., Lack L. Metabolism and Transport of Bile Salts in the Intestine. Am. J. Med. 1971; 51: 614–626
  • Lack L., Walker J.T., Singletary G.D. Ileal Bile Salt Transport: In Vivo Studies of Effect of Substrate Ionization on Activity. Am. J. Physiol. 1970; 219: 487–490
  • Low-Beer T.S., Tyor M.P., Lack L. Effects of Sulfation of Taurolithocholic and Glycolithocholic Acids on Their Intestinal Transport. Gastroenterology 1969; 56: 721–726
  • Heaton K.W., Lack L. Ileal Bile Salt Transport: Mutual Inhibition in an In Vivo System. Am. J. Physiol. 1968; 214: 585–590
  • Lack L., Weiner I.M. The Ileal Bile Salt Transport System: Effect of the Charged State of the Substrate on Activity. Biochim. Biophys. Acta 1967; 135: 1065–1068
  • Lack L., Weiner I.M. Intestinal Bile Salt Transport: Structure–Activity Relationships and Other Properties. Am. J. Physiol. 1966; 210: 1142–1152
  • Lack L., Tantawi A., Halevy C., Rockett D. Positional Requirements for Anionic Charge for Ileal Absorption of Bile Salt Analogues. Am. J. Physiol. 1984; 246: G745–G749
  • Firpi A., Walker J.T., Lack L. Interactions of Cationic Bile Salt Derivatives with the Ileal Bile Salt Transport System. J. Lipid Res. 1975; 16: 379–385
  • Lack L., Weiner I.M. In Vitro Absorption of Bile Salts by Small Intestine of Rats and Guinea Pigs. Am. J. Physiol. 1961; 200: 313–317
  • Lack L. Mechanisms of Ileal Bile Salt Transport: Implications Drawn from Structure–Activity Studies. Enterohepatic Circulation of Bile Acids and Sterol Metabolism. Falk Symposium 42, G. Paumgartner, A. Stiehl, W. Gerok. MTP Press, Ltd., Lancaster 1984; 121–128
  • Walker S., Stiehl A., Raedsch R., Kloters P., Kommerell B. Absorption of Urso- and Chenodeoxycholic Acid and Their Taurine and Glycine Conjugates in Rat Jejunum, Ileum, and Colon. Digestion 1985; 32: 47–52
  • Aldini R., Roda A., Lenzi P.L., Ussia G., Vaccari M.C., Mazzella G., Festi D., Bazzoli F., Galletti G., Casanova S., Montagnani M., Roda E. Bile Acid Active and Passive Ileal Transport in the Rabbit: Effect of Luminal Stirring. Eur. J. Clin. Investig. 1992; 22: 744–750
  • Schiff E.R., Small N.C., Dietschy J.M. Characterization of the Kinetics of the Passive and Active Transport Mechanisms for Bile Acid Absorption in the Small Intestine and Colon of the Rat. J. Clin. Investig. 1972; 51: 1351–1362
  • Krag E., Phillips S.F. Active and Passive Bile Acid Absorption in Man. Perfusion Studies of the Ileum and Jejunum. J. Clin. Investig. 1974; 53: 1686–1694
  • Wess G., Kramer W., Bartmann W., Enhsen A., Glombik H., Müllner S., Bock K., Dries A., Kleine H., Schmitt W. Modified Bile Acids: Preparation of 7α12α-Dihydroxy-3β- and 7α12α-Dihydroxy-3α-(2-hydroxyethoxy)-5β-cholanic Acid and Their Biological Activity. Tetrahedron Lett. 1992; 33: 195–198
  • Baringhaus K.H., Matter H., Stengelin S., Kramer W. Substrate Specificity of the Ileal and the Hepatic Na+/Bile Acid Cotransporters of the Rabbit. II. A Reliable 3D QSAR Pharmacophore Model for the Ileal Na+/Bile Acid Cotransporter. J. Lipid Res. 1999; 40: 2158–2168
  • Swaan P.W., Szoka F.C., Jr., Oie S. Molecular Modeling of the Intestinal Bile Acid Carrier: A Comparative Molecular Field Analysis Study. J. Comput. Aided Mol. Des. 1997; 11: 581–588
  • Kramer W., Stengelin S., Baringhaus K.H., Enhsen A., Heuer H., Becker W., Corsiero D., Girbig F., Noll R., Weyland C. Substrate Specificity of the Ileal and the Hepatic Na+/Bile Acid Cotransporters of the Rabbit. I. Transport Studies with Membrane Vesicles and Cell Lines Expressing the Cloned Transporters. J. Lipid Res. 1999; 40: 1604–1617
  • Helsper, F.; Swaan, P.W. Knowledge-Based Modeling of Solute Carrier Proteins: Application to the Apical Sodium-Dependent Bile Acid Transporter, submitted for publication.
  • Ho N.F.H. Utilizing Bile Acid Carrier Mechanisms to Enhance Liver and Small Intestine Absorption. Ann. N. Y. Acad. Sci. 1987; 507: 315–329
  • Swaan P.W., Hillgren K.M., Szoka F.C., Jr., Oie S. Enhanced Transepithelial Transport of Peptides by Conjugation to Cholic Acid. Bioconjug. Chem. 1997; 8: 520–525
  • Kramer W., Wess G., Schubert G., Bickel M., Girbig F., Gutjahr U., Kowalewski S., Baringhaus K.-H., Enhsen A., Glombik H., Müllner S., Neckermann G., Schulz S., Petzinger E. Liver-Specific Drug Targeting by Coupling to Bile Acids. J. Biol. Chem. 1992; 267: 18598–18604
  • Kramer W., Wess G., Enhsen A., Bock K., Falk E., Hoffmann A., Neckermann G., Gantz D., Schulz S., Nickau L., Petzinger E., Turley S., Dietschy J.M. Bile Acid Derived HMG-CoA Reductase Inhibitors. Biochim. Biophys. Acta 1994; 1227: 137–154
  • Wess G., Kramer W., Han X.B., Bock K., Enhsen A., Glombik H., Baringhaus K.H., Boger G., Urmann M., Hoffmann A., Falk E. Synthesis and Biological Activity of Bile Acid-Derived HMG-CoA Reductase Inhibitors. The Role of 21-Methyl in Recognition of HMG-CoA Reductase and the Ileal Bile Acid Transport System. J. Med. Chem. 1994; 37: 3240–3246
  • Stephan Z.F., Yurachek E.C., Sharif R., Wasvary J.M., Steele R., Howes C. Reduction of Cardiovascular and Thyroxine-Suppressing Activities of L-T3 by Liver Targeting with Cholic Acid. Biochem. Pharmacol. 1992; 43: 1969–1974
  • Kim D.-C., Harrison A.W., Ruwart M.J., Wilkinson K.F., Fisher J.F., Hidalgo I.J., Borchardt R.T. Evaluation of the Bile Acid Transporter in Enhancing Intestinal Permeability to Renin-Inhibitory Peptides. J. Drug Target 1993; 1: 347–359
  • Mills C.O., Martin G.H., Elias E. The Effect of Tyrosine Conjugation on the Critical Micellar Concentration of Free and Glycine-Conjugated Bile Salts. Biochim. Biophys. Acta 1986; 876: 677–683
  • Anwer M.S., O'Maille E.R., Hofmann A.F., DiPietro R.A., Michelotti E. Influence of Side-Chain Charge on Hepatic Transport of Bile Acids and Bile Acid Analogues. Am. J. Physiol. 1985; 249: G479–G488
  • Mills C.O., Iqbal S., Elias E. Selectively Reduced Biliary Excretion of Cholyldiglycylhistamine But Not of Cholyltetraglycylhistamine in Ethinyl Estradiol-Treated Rats. A Possible Indicator of Increased Bile Canalicular Permeability. J. Hepatol. 1985; 1: 199–210
  • Caspary W.F., Creutzfeldt W. Inhibition of Bile Salt Absorption by Blood-Sugar Lowering Biguanides. Diabetologia 1975; 11: 113–117
  • Root C., Smitth C.D., Winegar D.A., Brieaddy L.E., Lewis M.C. Inhibition of Ileal Sodium-Dependent Bile Acid Transport by 2164U90. J. Lipid Res. 1995; 36: 1106–1115
  • Lewis M.C., Brieaddy L.E., Root C. Effects of 2164U90 on Ileal Bile Acid Absorption and Serum Cholesterol in Rats and Mice. J. Lipid Res. 1995; 36: 1098–1105
  • Ekins S., Waller C.L., Swaan P.W., Cruciani G., Wrighton S.A., Wikel J.H. Progress in Predicting Human ADME Parameters In Silico. J. Pharmacol. Toxicol. Methods 2000; 44: 251–272
  • Luecke H., Schobert B., Richter H.T., Cartailler J.P., Lanyi J.K. Structure of Bacteriorhodopsin at 1.55 A Resolution. J. Mol. Biol. 1999; 291: 899–911
  • Toyoshima C., Nakasako M., Nomura H., Ogawa H. Crystal Structure of the Calcium Pump of Sarcoplasmic Reticulum at 2.6 A Resolution. Nature 2000; 405: 647–655
  • Scarborough G.A. Crystallization, Structure and Dynamics of the Proton-Translocating P-type ATPase. J. Exp. Biol. 2000; 203: 147–154
  • Schumacher M.A., Rivard A.F., Bachinger H.P., Adelman J.P. Structure of the Gating Domain of a Ca2+-activated K+ Channel Complexed with Ca2+/Calmodulin. Nature 2001; 410: 1120–1124

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.