253
Views
12
CrossRef citations to date
0
Altmetric
Research Article

PREDICTING PHARMACOKINETICS AND DRUG INTERACTIONS IN PATIENTS FROM IN VITRO AND IN VIVO MODELS: THE EXPERIENCE WITH 5,6-DIMETHYLXANTHENONE-4-ACETIC ACID (DMXAA), AN ANTI-CANCER DRUG ELIMINATED MAINLY BY CONJUGATION

, &
Pages 751-790 | Published online: 27 Nov 2002

REFERENCES

  • Li A.P. Screening for Human ADME/Tox Drug Properties in Drug Discovery. Drug Discov. Today 2001; 6: 357–366
  • Eddershaw P.J., Beresford A.P., Bayliss M.K. ADME/PK as Part of a Rational Approach to Drug Discovery. Drug Discov. Today 2000; 5: 409–414
  • Kennedy T. Managing the Drug Discovery/Development Interface. Drug Discov. Today 1997; 2: 436–444
  • Prentis R.A., Lis Y., Walker S.R. Pharmaceutical Innovation by the Seven UK-Owned Pharmaceutical Companies (1964–1985). Br. J. Clin. Pharmacol. 1988; 25: 387–396
  • Collins J.M. Inter-species Differences in Drug Properties. Chem.-Biol. Interact. 2001; 134: 237–242
  • Lin J.H., Lu A.Y.H. Role of Pharmacokinetics and Metabolism in Drug Discovery and Development. Pharmacol. Rev. 1997; 49: 403–449
  • Rodrigues A.D. Use of In Vitro Human Metabolism Studies in Drug Development. Biochem. Pharmacol. 1994; 48: 2147–2156
  • Eddershaw P.J., Dickins M. Advances in In Vitro Drug Metabolism Screening. Pharm. Sci. Technol. Today 1999; 2: 13–19
  • Streetman D.S., Bertino J.S., Nafziger A.N. Phenotyping of Drug-Metabolizing Enzymes in Adults: A Review of In-Vivo Cytochrome P450 Phenotyping Probes. Pharmacogenetics 2000; 10: 187–216
  • Lin J.H. Applications and Limitations of Interspecies Scaling and In Vitro Extrapolation in Pharmacokinetics. Drug Metab. Dispos. 1998; 26: 1202–1212
  • Boxenbaum H. Interspecies Variation in Liver Weight, Hepatic Weight, Hepatic Flow and Antipyrine Intrinsic Clearance in Extrapolation of Data to Benzodiazepines and Phenytoin. J. Pharmacokinet. Biopharm. 1980; 8: 165–176
  • Balant L.P., Gex-Fabry M. Physiological Pharmacokinetic Modelling. Xenobiotica 1990; 20: 1241–1257
  • Houston J.B. Utility of In Vitro Drug Metabolism Data in Predicting In Vivo Metabolic Clearance. Biochem. Pharmacol. 1994; 47: 1469–1479
  • Obach R.S. Metabolism of Ezlopitant, a Nonpeptidic Substance P Receptor Antagonist, in Liver Microsomes: Enzyme Kinetics, Cytochrome P450 Isoform Identity, and In Vitro–In Vivo Correlation. Drug Metab. Dispos. 2000; 28: 1069–1076
  • Faed E.M. Properties of Acyl Glucuronide: Implications for Studies of the Pharmacokinetics and Metabolism of Acidic Drugs. Drug Metab. Rev. 1984; 15: 1213–1249
  • Radominska-Pandya A., Czernik P.J., Little J.M., Battaglia E., Mackenzie P.I. Structural and Functional Studies of UDP-Glucuronosyltransferases. Drug Metab. Rev. 1999; 31: 817–899
  • Kerr D.J., Kaye S.B. Flavone Acetic Acid Preclinical and Clinical Activity. Eur. J. Cancer Clin. Oncol. 1989; 25: 1271–1272
  • Pang J.H., Cao Z., Joseph W.R., Baguley B.C., Ching L.-M. Antitumour Activity of the Novel Immune Modulator 5,6-Dimethylxanthenone-4-acetic Acid (DMXAA) in Mice Lacking the Interferon-Gamma Receptor. Eur. J. Cancer 1998; 34: 1282–1289
  • Thomsen L.L., Ching L.-M., Baguley B.C. Evidence for the Production of Nitric Oxide by Activated Macrophages Treated with the Antitumor Agents Flavone-8-acetic Acid and Xanthenone-4-acetic Acid. Cancer Res. 1990; 50: 6966–6970
  • Thomsen L.L., Ching L.-M., Zhuang L., Gavin J.B., Baguley B.C. Tumor-Dependent Increased Plasma Nitrate Concentrations as an Indication of the Antitumor Effect of Flavone-8-acetic Acid and Analogues in Mice. Cancer Res. 1991; 51: 77–81
  • Philpott M., Baguley B.C., Ching L.-M. Induction of Tumour Necrosis Factor-Alpha by Single and Repeated Doses of the Antitumour Agent 5,6-Dimethylxanthenone-4-acetic Acid. Cancer Chemother. Pharmacol. 1995; 36: 143–148
  • Ching L.-M., Baguley B.C. Enhancement of In Vitro Cytotoxicity of Mouse Peritoneal Exudate Cells by Flavone Acetic Acid (NSC 347512). Eur. J. Cancer Clin. Oncol. 1988; 24: 1521–1525
  • Ching L.-M., Baguley B.C. Effect of Flavone Acetic Acid (NSC 347,512) on Splenic Cytotoxic Effector cells and Their Role in Tumour Necrosis. Eur. J. Cancer Clin. Oncol. 1989; 25: 821–828
  • Zwi L.J., Baguley B.C., Gavin J.B., Wilson W.R. Blood Flow Failure as a Major Determinant in the Antitumor Action of Flavone Acetic Acid (NSC 347512). J. Natl Cancer Inst. 1989; 81: 1005–1013
  • Zwi L.J., Baguley B.C., Gavin J.B., Wilson W.R. Correlation Between Immune and Vascular Activities of Xanthenone Acetic Acid on Tumour Agents. Oncol. Res. 1994; 6: 79–85
  • Bibby M.C., Double J.A., Loadman P.M., Duke C.V. Reduction of Tumor Blood Flow by Flavone Acetic Acid: A Possible Component of Therapy. J. Natl Cancer Inst. 1989; 81: 216–220
  • Bibby M.C., Phillips R.M., Double J.A., Pratesi G. Anti-tumor Activity of Flavone Acetic Acid (NSC-347512) in Mice—Influence of Immune Status. Br. J. Cancer 1991; 63: 57–62
  • Ching L.-M., McKeage M.J., Joseph W.R., Kestell P., Zwi L.J., Baguley B.C. Haematological Effects in Mice of the Antitumour Agents Xanthenone-4-acetic Acid, 5,6-Dimethyl-xanthenone-4-acetic Acid and Flavone Acetic Acid. Cancer Chemother. Pharmacol. 1991; 28: 414–419
  • Gram T.E., Okine L.K., Gram R.A. The Metabolism of Xenobiotics by Certain Extrahepatic Organs and Its Relation to Toxicity. Annu. Rev. Pharmacol. Toxicol. 1986; 26: 259–292
  • Krishna D.R., Klotz U. Extrahepatic Metabolism of Drugs in Humans. Clin. Pharmacokinet. 1994; 26: 144–160
  • Lohr J.W., Willsky G.R., Acara M.A. Renal Drug Metabolism. Pharmacol. Rev. 1998; 50: 107–141
  • Kroemer H.K., Klotz U. Glucuronidation of Drugs: A Re-evaluation of the Pharmacological Significance of the Conjugates and Modulation Factors. Clin. Pharmacokinet. 1992; 23: 292–310
  • Meech R., Mackenzie P.I. Structure and Function of Uridine Diphosphate Glucuronosyltransferases. Clin. Exp. Pharmacol. Physiol. 1997; 24: 907–915
  • Rendic S., Di Carlo F.J. Human Cytochrome P450 Enzyme: A Status Report Summarizing Their Reactions, Substrates, Induction, and Inhibitors. Drug Metab. Rev. 1997; 29: 413–580
  • Burchell B., Brierley C.H., Monaghan G., Clarke D.J. The Structure and Function of the UDP-Glucuronosyltransferase Gene Family. Adv. Pharmacol. 1998; 42: 335–338
  • Tukey R.H., Strassburg C.P. Human UDP-Glucuronosyltransferases: Metabolism, Expression, and Disease. Annu. Rev. Pharmacol. Toxicol. 2000; 40: 581–616
  • Shimada T., Yamazaki H., Mimura M., Inui Y., Guengerich F.P. Interindividual Variations in Human Liver Cytochrome P450 Enzymes Involved in the Oxidation of Drugs, Carcinogens and Toxic Chemicals. J. Pharmacol. Exp. Ther. 1994; 270: 414–423
  • Bertz R.J., Granneman G.R. Use of In Vitro and In Vivo Data to Estimate the Likelihood of Metabolic Pharmacokinetic Interactions. Clin. Pharmacokinet. 1997; 32: 210–258
  • Kivisto K.T., Kroemer H.K., Eichelbaum M. The Role of Human Cytochrome P450 Enzymes in the Metabolism of Anticancer Agents—Implications for Drug Interactions. Br. J. Clin. Pharmacol. 1995; 40: 523–530
  • Crommentuyn K.M.L., Schellens J.H.M., Vandenberg J.D., Beijnen J.H. In-Vitro Metabolism of Anti-cancer Drugs, Methods and Applications—Paclitaxel, Docetaxel, Tamoxifen and Ifosfamide. Cancer Treat. Rev. 1998; 24: 345–366
  • Kamataki T., Yokoi T., Fujita K., Ando Y. Preclinical Approach for Identifying Drug Interactions. Cancer Chemother. Pharmacol. 1998; 42(Suppl.)S50–S53
  • Huang Z.Q., Roy P., Waxman D.J. Role of Human Liver Microsomal CYP3A4 and CYP2B6 in Catalyzing N-dechloroethylation of Cyclophosphamide and Ifosfamide. Biochem. Pharmacol. 2000; 59: 961–972
  • Iyer L. Inherited Variations in Drug-Metabolizing Enzymes: Significance in Clinical Oncology. Mol. Diagn. 1999; 4: 327–333
  • Tanaka E. Update: Genetic Polymorphism of Drug Metabolizing Enzymes in Humans. J. Clin. Pharm. Ther. 1999; 24: 323–329
  • Han X.M., Zhou H.H. Polymorphism of CYP450 and Cancer Susceptibility. Acta Pharmacol. Sin. 2000; 21: 673–679
  • Wormhoudt L.W., Commandeur J.N.M., Vermeulen N.P.E. Genetic Polymorphisms of Human N-Acetyltransferase, Cytochrome P450, Glutathione-S-transferase, and Epoxide Hydrolase Enzymes: Relevance to Xenobiotic Metabolism and Toxicity. Crit. Rev. Toxicol. 1999; 29: 59–124
  • Snyder R. Microsomal Enzyme Induction. Toxicol. Sci. 2000; 55: 233–234
  • Pelkonen O., Maenpaa J., Taavitsainen P., Rautio A., Raunio H. Inhibition and Induction of Human Cytochrome P450 (CYP) Enzymes. Xenobiotica 1998; 28: 1203–1253
  • Dresser G.K., Spence J.D., Bailey D.G. Pharmacokinetic–Pharmacodynamic Consequences and Clinical Relevance of Cytochrome P450 3A4 Inhibition. Clin. Pharmacokinet. 2000; 38: 41–57
  • Lin J.H., Lu A.Y. Interindividual Variability in Inhibition and Induction of Cytochrome P450 Enzymes. Annu. Rev. Pharmacol. Toxicol. 2001; 41: 535–567
  • Kestell P., Rewcastle G.W., Baguley B.C. Disposition of the Novel Antitumour Agent Xanthenone-4-acetic Acid in the Mouse: Identification of Metabolites and Routes of Elimination. Xenobiotica 1994; 24: 635–647
  • Cummings J., Double J.A., Bibby M.C., Farmer P., Evens S., Kerr D.J., Kaye S.B., Smyth J.F. Characterization of the Major Metabolites of Flavone Acetic Acid and Comparison of Their Disposition in Humans and Mice. Cancer Res. 1989; 49: 3587–3593
  • Webster L.K., Ellis A.G., Kestell P., Rewcastle G.W. Metabolism and Elimination of 5,6-Dimethylxanthenone-4-acetic Acid in the Isolated Perfused Rat Liver. Drug Metab. Dispos. 1995; 23: 363–368
  • Zhou S.F., Paxton J.W., Tingle M.D., McCall J., Kestell P. Determinaton of Two Major Metabolites of the Novel Anti-tumour Agent 5,6-Dimethylxanthenone-4-acetic acid in Hepatic Microsomal Incubations by High-Performance Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B 1999; 734: 129–136
  • Zhou S.F., Paxton J.W., Tingle M.D., Kestell P. Species Differences in the Metabolism and Inhibition of the Novel Antitumour Agent 5,6-Dimethylxanthenone-4-acetic Acid In Vitro: Implications for Prediction of Metabolic Interactions and Toxicity In Vivo. Xenobiotica 2002; 32: 87–107
  • Sallustio B.C., Purdie Y.J., Birkett D.J., Meffin P.J. Effect of Renal Dysfunction on the Individual Components of the Acyl-Glucuronide Futile Cycle. J. Pharmacol. Exp. Ther. 1989; 251: 288–294
  • Yue Q., von Bahr C., Odar-Cederlof I., Sawe J. Glucuronidation of Codeine and Morphine in Human Liver and Kidney Microsomes: Effect of Inhibitors. Pharmacol. Toxicol. 1990; 66: 221–226
  • Brunelle F.M., Verbeeck R.K. Glucuronidation of Diflunisal in Liver and Kidney Microsomes of Rat and Man. Xenobiotica 1996; 26: 123–131
  • McGurk K.A., Brierley C.H., Burchell B. Drug Glucuronidation by Human Renal UDP-Glucuronosyltransferases. Biochem. Pharmacol. 1998; 55: 1005–1012
  • Davidson I.W.F., Parker J.C., Beliles R.P. Biological Basis for Extrapolation Across Mammalian Species. Regul. Toxicol. Pharmacol. 1986; 6: 211–237
  • Wong K.P. Measurement of Nanogram Quantities of UDP-Glucuronic acid in Tissues. Anal. Biochem. 1977; 82: 559–563
  • Cappiello M., Giuliani L., Pacifici G.M. Distribution of UDP-Glucuronosyltransferase and Its Endogenous Substrate Uridine 5′-Diphosphoglucuronic Acid in Human Tissues. Eur. J. Clin. Pharmacol. 1991; 41: 345–350
  • Kestell P., Paxton J.W., Rewcastle G.W., Dunlop I., Baguley B.C. Plasma Disposition, Metabolism and Excretion of the Experimental Antitumour Agent 5,6-Dimethylxanthenone-4-acetic Acid in the Mouse, Rat and Rabbit. Cancer Chemother. Pharmacol. 1999; 43: 323–330
  • Zhou S.F., Paxton J.W., Tingle M.D., Kestell P., Jameson M.B., Thomson P.I., Baguley B.C. Identification and Reactivity of the Major Metabolite (b-1-Glucuronide) of the Anti-tumour Agent 5,6-Dimethylxanthenone-4-acetic Acid (DMXAA) in Humans. Xenobiotica 2001; 31: 277–293
  • Zhou S.F., Paxton J.W., Tingle M.D., Kestell P. Identification of the Human Liver Cytochrome P450 Isozyme Responsible for the 6-Methylhydroxylation of the Novel Anticancer Drug 5,6-Dimethylxanthenone-4-acetic Acid. Drug Metab. Dispos. 2000; 28: 1449–1456
  • Miners J.O., Valente L., Lillywhite K.J., Mackenzie P.I., Burchell B., Baguley B.C., Kestell P. Preclinical Prediction of Factors Influencing the Elimination of 5,6-Dimethylxanthenone-4-acetic Acid, a New Anticancer Drug. Cancer Res. 1997; 57: 284–289
  • Burchell B., Brierley C.H., Rance D. Specificity of Human UDP-Glucuronosyl-Transferases and Xenobiotic Glucuronidation. Life Sci. 1995; 57: 1818–1831
  • King C., Tang W., Ngui J., Tephly T., Braun M. Characterization of Rat and Human UDP-Glucuronosyltransferases Responsible for the In Vitro Glucuronidation of Diclofenac. Toxicol. Sci. 2001; 61: 49–53
  • Coffman B.L., Rios G.R., King C.D., Tephly T.R. Human UGT2B7 Catalyzes Morphine Glucuronidation. Drug Metab. Dispos. 1997; 25: 1–4
  • Innocenti F., Iyer L., Ramírez J., Green M.D., Ratain M.J. Epirubicin Glucuronidation Is Catalyzed by Human UDP-Glucuronosyltransferase 2B7. Drug Metab. Dispos. 2001; 29: 686–692
  • Ren Q., Murphy S.E., Zheng Z., Lazarus P. O-Glucuronidation of the Lung Carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) by Human UDP-Glucuronosyltransferases 2B7 and 1A9. Drug Metab. Dispos. 2000; 28: 1352–1360
  • Munzel P.A., Schmohl S., Heel H., Kalberer K., Bock-Hennig B.S., Bock K.W. Induction of Human UDP Glucuronosyltransferases (UGT1A6, UGT1A9, and UGT2B7) by t-Butylhydroquinone and 2,3,7,8-Tetrachlorodibenzo-p-dioxin in Caco-2 Cells. Drug Metab. Dispos. 1999; 27: 569–573
  • Mackenzie P.I., Miners J.O., McKinnon R.A. Polymorphisms in UDP Glucuronosyltransferase Genes: Functional Consequences and Clinical Relevance. Clin. Chem. Lab. Med. 2000; 38: 889–892
  • Raijmakers M.T.M., Jansen P.L.M., Steegers E.A.P., Peters W.H.M. Association of Human Liver Bilirubin UDP-Glucuronyltransferase Activity with a Polymorphism in the Promoter Region of the UGT1A1 Gene. J. Hepatol. 2000; 33: 348–351
  • Ciotti M., Marrone A., Potter C., Owens I.S. Genetic Polymorphism in the Human UGT1A6 (Planar Phenol) UDP-Glucuronosyltransferase—Pharmacological Implications. Pharmacogenetics 1997; 7: 485–495
  • Levesque B., Beaulieu M., Hum D.W., Belanger A. Characterization and Substrate Specificity of UGT2B4 (E-458): A UDP-Glucuronosyltransferase Encoded by a Polymorphic Gene. Pharmacogenetics 1999; 9: 207–216
  • Bhasker C.R., McKinnon W., Stone A., Lo A.C.T., Kubota T., Ishizaki T., Miners J.O. Genetic Polymorphism of UDP-Glucuronosyltransferase 2B7 (UGT2B7) at Amino Acid 268: Ethnic Diversity of Alleles and Potential Clinical Significance. Pharmacogenetics 2000; 10: 679–685
  • Levesque E., Beaulieu M., Green M.D., Tephly T.R., Belanger A., Hum D.W. Isolation and Characterization of UGT2B15(Y-85)—A UDP-Glucuronosyltransferase Encoded by a Polymorphic Gene. Pharmacogenetics 1997; 7: 317–325
  • Fisher M.B., VandenBranden M., Findlay K., Burchell B., Thummel K.E., Hall S.D., Wrighton S.A. Tissue Distribution and Interindividual Variation in Human UDP-Glucuronosyltransferase Activity: Relationship Between UGT1A1 Promoter Genotype and Variability in a Liver Bank. Pharmacogenetics 2000; 10: 727–739
  • Jameson M.B., Thomson P.I., Baguley B.C., Evans B.D., Harvey V.J., McCrystal M.R., Kestell P. Phase I Pharmacokinetic and Pharmacodynamic Study of 5,6-Dimethylxanthenone-4-acetic Acid (DMXAA), a Novel Antivascular Agent. Proc. Annu. Meet. Am. Soc. Clin. Oncol. 2000; 19: 182
  • Landi M.T., Sinha R., Lang N.P., Kadlubar F.F. Metabolic Polymorphisms and Susceptibility to Cancer, W. Ryder. IARC Scientific Publications, Lyon 1999; 173–195
  • Miners J.O., Rees D.L.P., Valente L., Veronese M.E., Birkett D.J. Human Hepatic Cytochrome P450 2C9 Catalyzes the Rate-Limiting Pathway of Torsemide Metabolism. J. Pharmacol. Exp. Ther. 1995; 272: 1076–1081
  • Veronese M.E., Mackenzie P.I., Doecke C.J., McManus M.E., Miners J.O., Birkett D.J. Tolbutamide and Phenytoin Hydroxylation by cDNA-Expressed Human Liver Cytochrome P4502C9. Biochem. Biophys. Res. Commun. 1991; 175: 1112–1118
  • Tassaneeyakul W., Birkett D.J., Edwards J.W., Veronese M.E., Tassaneeyakul W., Tukey R.H., Miners J.O. Human Cytochrome P450 Isoform Specificity in the Regioselective Metabolism of Toluene and o-, m- and p-Xylene. J. Pharmacol. Exp. Ther. 1996; 276: 101–108
  • Gorrod J.W., Damani L.A. The Effect of Various Potential Inhibitors, Activators and Inducers on the N-oxidation of 3-Substituted Pyridines In Vitro. Xenobiotica 1979; 9: 219–226
  • Sesardic D., Boobis A.R., Murray B.P., Murray S., Segura J., De la Torre R., Davies D.S. Furafylline Is a Potent and Selective Inhibitor of Cytochrome P450IA2 in Man. Br. J. Clin. Pharmacol. 1990; 29: 651–663
  • Eagling V.A., Tjia J.F., Back D.J. Differential Selectivity of Cytochrome P450 Inhibitors Against Probes Substrates in Human and Rat Liver Microsomes. Br. J. Clin. Pharmacol. 1998; 45: 107–114
  • de Montellano P.R.O. Handbook of Drug Metabolism, T.E. Woolf. Marcel Dekker Pub., New York 1999; 203–227
  • Lewis D.F., Ionnides C., Parke D.V. Cytochrome P450 and Species Differences in Xenobiotic Metabolism and Activation of Carcinogen. Environ. Health Perspect. 1998; 106: 633–641
  • Halpert J.R., Guengerich F.P., Bend J.R., Correia M.A. Selective Inhibitors of Cytochromes P450. Toxicol. Appl. Pharmacol. 1994; 125: 163–175
  • Boobis A.R., Sesardic D., Murray B.P., Edwards R.J., Singleton A.M., Rich K.J., Murray S., de la Torre R., Segura J., Pelkonen O., Pasanen M., Kobayashi S., Zhi-guang T., Davies D.S. Species Variation in the Response of the Cytochrome P450-Dependent Monooxygenase System to Inducers and Inhibitors. Xenobiotica 1990; 20: 1139–1161
  • Nedelcheva D., Gut I. P450 in the Rat and Man: Methods of Investigation, Substrate Specificities and Relevance to Cancer. Xenobiotica 1994; 24: 1151–1175
  • Zhou S.F., Chin R., Tingle M.D., Kestell P., Paxton J.W. Effects of Anti-cancer Drugs on the Metabolism of the Novel Anti-cancer Drug 5,6-Dimethylxanthenone-4-acetic Acid (DMXAA) in Human Liver Microsomes. Br. J. Clin. Pharmacol. 2001; 52: 129–136
  • Kestell P., Dunlop I.C., McCrystal M.R., Evans B.D., Paxton J.W., Gamage R.S., Baguley B.C. Plasma Pharmacokinetics of N-[2-(Dimethylamino)Ethyl]-Acridine-4-carboxamide in a Phase I Trial. Cancer Chemother. Pharmacol. 1999; 44: 45–50
  • Paul C., Liliemark J., Tidefelt U., Gahrton G., Peterson C. Pharmacokinetics of Daunorubicin and Doxorubicin in Plasma and Leukemic Cells from Patients with Acute Nonlymphoblastic Leukemia. Ther. Drug Monit. 1989; 11: 140–148
  • Olson R.E., Christ D.D. Plasma Protein Binding of Drugs. Ann. Rep. Med. Chem. 1996; 31: 327–336
  • Spahn-Lugguth H., Benet L.Z. Acyl Glucuronide Revisited: Is the Glucuronidation Process a Toxification as Well as a Detoxification Mechanism?. Drug Metab. Rev. 1992; 24: 5–48
  • Smith P.C., Song W.Q., Rodriguez R.J. Covalent Binding of Etodolac Acyl Glucuronide to Albumin In Vitro. Drug Metab. Dispos. 1992; 20: 962–965
  • Bischer A., Ziaamirhosseini P., Iwaki M., Mcdonagh A.F., Benet L.Z. Stereoselective Binding Properties of Naproxen Glucuronide Diastereomers to Proteins. J. Pharmacokinet. Biopharm. 1995; 23: 379–395
  • Sallustio B.C., Foster D.J.R. Reactivity of Gemfibrozil 1-O-Gemfibrozil-b-d-glucuronide: Pharmacokinetics of Covalently Bound Gemfibrozil–Protein Adducts in Rats. Drug Metab. Dispos. 1995; 23: 892–899
  • Sallustio B.C., Fairchild B.A., Pannall P.R. Interaction of Human Serum Albumin with the Electrophilic Metabolite 1-O-Gemfibrozil-b-d-glucuronide. Drug Metab. Dispos. 1997; 25: 55–60
  • Shen S.J., Marchick M.R., Davis M.R., Doss G.A., Pohl L.R. Metabolic Activation of Diclofenac by Human Cytochrome P450 3A4: Role of 5-Hydroxydiclofenac. Chem. Res. Toxicol. 1999; 12: 214–222
  • Terrier N., Benoit E., Senay C., Lapicque F., Radominska-Pandya A., Magdalou J., Fournel-Gigleux S. Human and Rat Liver UDP-Glucuronosyltransferases Are Targets of Ketoprofen Acylglucuronide. Mol. Pharmacol. 1999; 56: 226–234
  • Sallustio B.C., Harkin L.A., Mann M.C., Krivickas S.J., Burcham P.C. Genotoxicity of Acyl Glucuronide Metabolites Formed from Clofibric Acid and Gemfibrozil: A Novel Role for Phase II-Mediated Bioactivation in the Hepatocarcinogenicity of the Parent Aglycone. Toxicol. Appl. Pharmacol. 1997; 147: 459–464
  • Chabot G.G., Gouyette A. Reactivity of Flavone Acetic Acid and Its Acyl Glucuronide. Biochem. Pharmacol. 1991; 42: 1145–1148
  • Zhou S.F., Kestell P., Tingle M.D., Paxton J.W. Determination of the Covalent Adducts of the Novel Anti-cancer Agent 5,6-Dimethylxanthenone-4-acetic Acid in Biological Samples by High-Performance Liquid Chromatography. J. Chromatogr. B 2001; 757: 343–348
  • Benet L.Z., Spahn-Lugguth H., Iwakaw S.C.V., Mizuma T., Mayer S., Mutschler E., Lin E.T. Predictability of the Covalent Binding of Acidic Drugs in Man. Life Sci. 1993; 53: 141–146
  • Zia-amirhosseini P., Ojingwa J.C., Spahn-langguth H., Mcdonagh A.F., Benet L.Z. Enhanced Covalent Binding of Tolmetin to Proteins in Humans After Multiple Dosing. Clin. Pharmacol. Ther. 1994; 55: 21–27
  • Sallustio B.C., Knights K.M., Roberts B.J., Zacest R. In Vivo Covalent Binding of Clobibric Acid to Human Plasma Proteins and Rat Liver Proteins. Biochem. Pharmacol. 1991; 42: 1421–1425
  • Smith P.C., Benet L.Z., Mcdonagh A.F. Irreversible Binding of Zomepirac to Plasma Protein In Vitro and In Vivo. J. Clin. Investig. 1986; 77: 934–939
  • Meffin P.J., Zilm D.M., Veenendaal J.R. A Renal Mechanism for the Clofibric Acid–Probenecid Interaction. J. Pharmacol. Exp. Ther. 1983; 227: 739–742
  • Fichtl B., Nieciecki A., Walter K. Tissue Binding Versus Plasma Binding of Drugs: General Principles and Pharmacokinetic Consequences. Adv. Drug Res. 1991; 20: 117–166
  • du Souich P., Verges J., Erill S. Plasma Protein Binding and Pharmacological Response. Clin. Pharmacokinet. 1993; 24: 435–440
  • Lin J.H. Species Similarities and Differences in Pharmacokinetics. Drug Metab. Dispos. 1995; 23: 1008–1021
  • Cassidy J., Kerr D.J., Setanoians A., Zaharko D.S., Kaye S.B. Could Interspecies Differences in the Protein Binding of Flavone Acetic Acid Contribute to the Failure to Predict Lack of Efficacy in Patients?. Cancer Chemother. Pharmacol. 1989; 23: 397–400
  • Chabot G.G., Bissery M.C., Corbett T.H., Rutkowski K., Baker L.H. Pharmacodynamics and Causes of Dose-Dependent Pharmacokinetics of Flavone-8-acetic Acid (LM-975; NSC-347512) in Mice. Cancer Chemother. Pharmacol. 1989; 24: 15–22
  • Perera P.Y., Barber S.A., Ching L.-M., Vogel S.N. Activation of LPS-Inducible Genes by the Antitumor Agent 5,6-Dimethylxanthenone-4-acetic Acid in Primary Murine Macrophages. Dissection of Signaling Pathways Leading to Gene Induction and Tyrosine Phosphorylation. J. Immunol. 1994; 153: 4684–4693
  • Ching L.-M., Joseph W.R., Crosier K.E., Baguley B.C. Induction of Tumour Necrosis Factor—A Messenger RNA in Humans and Murine Cells by the Flavone Acetic Acid Analogue 5,6-Dimethylxanthenone-4-acetic Acid (NSC 640488). Cancer Res. 1994; 54: 870–872
  • Zhou S.F., Kestell P., Tingle M.D., Paxton J.W. Determination of Unbound Concentration of the Novel Anti-tumour Agent 5,6-Dimethylxanthenone-4-acetic Acid in Human Plasma by Ultrafiltration Followed By High-Performance Liquid Chromatography with Fluorimetric Detection. J. Chromatogr. B 2001; 757: 359–363
  • Zhou S.F., Paxton J.W., Kestell P., Tingle M.D. Reversible Binding of the Novel Anti-tumour Agent 5,6-Dimethylxanthenone-4-acetic Acid to Plasma Proteins and Blood Cells in Various Species. J. Pharm. Pharmacol. 2001; 53: 463–471
  • McKeage M.J., Kestell P., Denny W.A., Baguley B.C. Plasma Pharmacokinetics of the Antitumour Agents 5,6-Dimethylxanthenone-4-acetic Acid, Xanthenone-4-acetic Acid and Flavone-8-acetic Acid in Mice. Cancer Chemother. Pharmacol. 1991; 28: 409–413
  • Boxenbaum H. Interspecies Scaling, Allometry, Physiological Time, and the Ground Plan of Pharmacokinetics. J. Pharmacokinet. Biopharm. 1982; 10: 201–227
  • Modenti J. Dosage Regimen Design for Pharmaceutical Studies Conducted in Animals. J. Pharm. Sci. 1986; 75: 852–856
  • Mahmood I., Balian J.D. The Pharmacokinetic Principles Behind Scaling from Preclinical Results to Phase I Protocols. Clin. Pharmacokinet. 1999; 36: 1–11
  • Zaharko D.S., Grieshaber C.K., Plowman J., Cradock J.C. Therapeutic and Pharmacokinetic Relationships of Flavone Acetic Acid: An Agent with Activity Against Solid Tumors. Cancer Treat. Rep. 1986; 70: 1415–1421
  • Zhou S.F., Paxton J.W., Tingle M.D., Kestell P., Ching L.-M. In Vitro and In Vivo Kinetic Interactions of the Anti-tumour Agent 5,6-Dimethylxanthenone-4-acetic Acid with Thalidomide and Diclofenac. Cancer Chemother. Pharmacol. 2001; 47: 319–326
  • Kestell P., Zhao L., Ching L.-M., Baguley B.C., Paxton J.W. Modulation of the Plasma Pharmacokinetics of 5,6-Dimethylxanthenone-4-acetic Acid by Thalidomide in Mice. Cancer Chemother. Pharmacol. 2000; 46: 135–141
  • Zhou S.F., Kestell P., Tingle M.D., Ching L.-M., Paxton J.W. A Difference Between the Rat and Mouse in the Pharmacokinetic Interaction of 5,6-Dimethylxanthenone-4-acetic Acid with Thalidomide. Cancer Chemother. Pharmacol. 2001; 47: 541–544
  • Zhao L., Ketsell P., Zhuang L., Baguley B.C. Effects of the Serotonin Receptor Antagonist Cyproheptadine on the Activity and Pharmacokinetic of 5,6-Dimethylxanthenone-4-acetic (DMXAA). Cancer Chemother. Pharmacol. 2001; 47: 491–497
  • Ito K., Iwatsubo T., Kanamitsu S., Nukajima Y., Sugiyama Y. Quantitative Prediction of In Vivo Drug Clearance and Drug Interactions from In Vitro Data on Metabolism, Together with Binding and Transport. Annu. Rev. Pharmacol. Toxicol. 1998; 38: 461–499
  • Houston J.B., Carlile D.J. Incorporation of In Vitro Drug Metabolism Data into Physiologically-Based Pharmacokinetic Models. Toxicol. In Vitro 1997; 11: 473–478
  • von Moltke L.L., Greenblatt D.J., Schmider J., Wright C.E., Harmatz J.S., Shader R.I. In Vitro Approaches to Predicting Drug Interactions In Vivo. Biochem. Pharmacol. 1998; 55: 113–122
  • Ito K., Iwatsubo T., Kanamitsu S., Ueda K., Suzuki H., Sugiyama Y. Prediction of Pharmacokinetic Alterations Caused by Drug–Drug Interactions: Metabolic Interaction in the Liver. Pharmacol. Rev. 1998; 50: 387–411
  • Lave T., Coassolo P., Reigner B. Prediction of Hepatic Metabolic Clearance Based on Interspecies Allometric Scaling Techniques and In Vitro In Vivo Correlations. Clin. Pharmacokinet. 1999; 36: 211–231
  • Houston J.B., Kenworthy K.E. In Vitro–In Vivo Scaling of CYP Kinetic Data not Consistent with the Classical Michaelis–Menten Model. Drug Metab. Dispos. 2000; 28: 246–254
  • Ubeaud G., Schmitt C., Jaeck D., Lave T., Coassolo P.H.H. Bosentan, a New Endothelin Receptor Antagonist: Prediction of the Systemic Plasma Clearance in Man from Combined In Vivo and In Vitro Data. Xenobiotica 1995; 25: 1381–1390
  • Boxenbaum H. Interspecies Pharmacokinetic Scaling and the Evolutionary-Comparative Paradigm. Drug Metab. Rev. 1984; 15: 1071–1121
  • Mitsuhashi Y., Sugiyama Y., Ozawa S., Nitanai T., Sasahara K., Nakamura K., Tanaka M., Nishimura T., Inaba M., Kobayashi T. Prediction of ACNU Plasma Concentration–Time Profiles in Humans by Animal Scale-Up. Cancer Chemother. Pharmacol. 1990; 27: 20–26
  • Paxton J.W., Kim S.N., Whitefield L.R. Pharmacokinetic and Toxicity Scaling of the Antitumour Agents Amsacrine and CI-921, a New Analogue, in Mice, Rats, Rabbits, Dogs, and Humans. Cancer Res. 1990; 50: 2692–2697
  • Dogra S.C., Khanduja K.L., Sharma R.R. Hepatic Drug-Metabolising Enzymes in Lung Tumour-Bearing Rats. Biochem. Pharmacol. 1985; 34: 3190–3193
  • Relling M.V., Crom W.R., Pieper J.A., Cupit G.C., Rivera G.K., Evans W.E. Hepatic Drug Clearance in Children with Leukemia: Changes in Clearance of Model Substrates During Remission-Induction Therapy. Clin. Pharmacol. Ther. 1987; 41: 651–660
  • Lewis D.F. Quantitative Structure–Activity Relationships in Substrates, Inducers, and Inhibitors of Cytochrome P4501 (CYP1). Drug Metab. Rev. 1997; 29: 589–650
  • Dai R., Zhai S., Wei X., Pincus M.R., Vestal R.E., Friedman F.K. Inhibition of Human Cytochrome P450 1A2 by Flavone: A Molecular Modeling Study. J. Protein Chem. 1998; 17: 643–650
  • Wei X.X., Dai R.K., Zhai S.P., Thummel K.E., Friedman F.K., Vestal R.E. Inhibition of Human Liver Cytochrome P-450 1A2 by the Class Ib Antiarrhythmics Mexiletine, Lidocaine, and Tocainide. J. Pharmacol. Exp. Ther. 1999; 289: 853–858
  • Lozano J.J., Pastor M., Cruciani G., Gaedt K., Centeno N.B., Gago F., Sanz F. 3D-QSAR Methods on the Basis of Ligand–Receptor Complexes. Application of COMBINE and GRID/GOLPE Methodologies to a Series of CYP1A2 Ligands. J. Comput.-Aided Mol. Des. 2000; 14: 341–353
  • Osborne C.K. Mechanisms for Tamoxifen Resistance in Breast Cancer: Possible Role of Tamoxifen Metabolism. J. Steroid Biochem. Mol. Biol. 1993; 47: 83–89
  • Stearns R.A., Miller R.R., Doss G.A., Chakravarty P.K., Rosegay A., Gatto G.J., Chiu S.H. The Metabolism of Dup 753, a Nonpeptide Angiotensin II Receptor Antagonist, by Rat, Monkey, and Human Liver Slices. Drug Metab. Dispos. 1992; 20: 281–287
  • Venkatakrishnan K., von Moltke L.L., Greenblatt D.J. Nortriptyline E-10-Hydroxylation In Vitro Is Mediated by Human CYP2D6 (High Affinity) and CYP3A4 (Low Affinity): Implications for Interactions with Enzyme-Inducing Drugs. J. Clin. Pharmacol. 1999; 39: 567–577
  • Iwatsubo T., Hirota N., Ooie T., Suzuki H., Shimada N., Chiba K., Ishizaki T., Green C.E., Tyson C.A., Sugiyama Y. Prediction of In Vivo Drug Metabolism in the Human Liver from In Vitro Metabolism Data. Pharmacol. Ther. 1997; 73: 147–171
  • Nakajima M., Nakamura S., Tokudome S., Shimada N., Yamazaki H., Yokoi T. Azelastine N-Demethylation by Cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in Human Liver Microsomes: Evaluation of Approach to Predict the Contribution of Multiple CYPs. Drug Metab. Dispos. 1999; 27: 1381–1391
  • Sai Y., Yang T.J., Krausz K.W., Gonzalez F.J., Gelboin H.V. An Inhibitory Monoclonal Antibody to Human Cytochrome P450 2A6 Defines Its Role in the Metabolism of Coumarin, 7-Ethoxycoumarin and 4-Nitroanisole in Human Liver. Pharmacogenetics 1999; 9: 229–237
  • Mistry M., Houston J.B. Glucuronidation In Vitro and In Vivo: Comparison of Intestinal and Hepatic Conjugation of Morphine, Naloxone, and Bupreonorphine. Drug Metab. Dispos. 1987; 15: 710–717
  • Obach R.S. Nonspecific Binding to Microsomes: Impact on Scale-Up of In Vitro Intrinsic Clearance to Hepatic Clearance as Assessed Through Examination of Warfarin, Imipramine, and Propranolol. Drug Metab. Dispos. 1997; 25: 1359–1369
  • Komatsu T., Yamazaki H., Shimada N., Nakajima M., Yokoi T. Roles of Cytochromes P450 1A2, 2A6, and 2C8 in 5-Fluorouracil Formation from Tegafur, an Anticancer Prodrug, in Human Liver Microsomes. Drug Metab. Dispos. 2000; 28: 1457–1463
  • Walker D., Flinois J.P., Monkman S., Beloc C., Boddy A.V., Cholerton S., Daly A.K., Lind M.J., Pearson A.D.J., Beaune P.H., Idle J.R. Identification of the Major Human Hepatic Cytochrome P450 Involved in Activation and N-Dechloroethylation of Ifosfamide. Biochem. Pharmacol. 1994; 47: 1157–1163
  • Chang T.K., Yu L., Goldstein J.A., Waxman D.J. Identification of the Polymorphically Expressed CYP2C19 and the Wild-Type CYP2C9-ILE359 Allele as Low-Km Catalysts of Cyclophosphamide and Ifosfamide Activation. Pharmacogenetics 1997; 7: 211–221
  • Cresteil T., Monsarrat B., Alvinerie P., Treluyer J.M., Vieira I., Wright M. Taxol Metabolism by Human Liver Microsomes: Identification of Cytochrome P450 Isozymes Involved in Its Biotransformation. Cancer Res. 1994; 54: 386–392
  • Harris J.W., Rahman A., Kim B.R., Guengerich F.P., Collins J.M. Metabolism of Taxol by Human Hepatic Microsomes and Liver Slices: Participation of Cytochrome P450 3A4 and an Unknown P450 Enzyme. Cancer Res. 1994; 54: 4026–4035
  • Kumar G.N., Walle U.K., Walle T. Cytochrome P450 3A-Mediated Human Liver Microsomal Taxol 6 Alpha-Hydroxylation. J. Pharmacol. Exp. Ther. 1994; 268: 1160–1165
  • Rahman A., Korzekwa K.R., Grogan J., Gonzalez F.J., Harris J.W. Selective Biotransformation of Taxol to 6 Alpha-Hydroxytaxol by Human Cytochrome P450 2C8. Cancer Res. 1994; 54: 5543–5546
  • Dehal S.S., Kupfer D. CYP2D6 Catalyzes Tamoxifen 4-Hydroxylation in Human Liver. Cancer Res. 1997; 57: 3402–3406
  • Relling M.V., Nemec J., Schuetz E.G., Schuetz J.D., Gonzalez F.J., Korzekwa K.R. O-Demethylation of Ipipodophyllotoxins Is Catalyzed by Human Cytochrome P450 3A4. Mol. Pharmacol. 1994; 45: 352–358
  • Kawashiro T., Yamashita K., Zhao X.J., Koyama E., Tani M., Chiba K., Ishizaki T. A Study on the Metabolism of Etoposide and Possible Interactions with Antitumor or Supporting Agents by Human Liver Microsomes. J. Pharmacol. Exp. Ther. 1998; 286: 1294–1300
  • Zhou-Pan X.R., Seree E., Zhou X.J., Placidi M., Maurel P., Barra Y., Rahmani R. Involvement of Human Liver Cytochrome 3A in Vinblastine Metabolism: Drug Interactions. Cancer Res. 1993; 53: 5121–5126
  • Kajita J., Kuwabara T., Kobayashi H., Kobayashi S. CYP3A4 Is Mainly Responsible for the Metabolism of a New Vinca Alkaloid, Vinorelbine, in Human Liver Microsomes. Drug Metab. Dispos. 2000; 28: 1121–1127
  • Marre F., Sanderink G.J., Desousa G., Gaillard C., Martinet M., Rahmani R. Hepatic Biotransformation of Docetaxel (Taxotere(r)) In Vitro—Involvement of the CYP3A Subfamily in Humans. Cancer Res. 1996; 56: 1296–1302
  • Shou M., Martinet M., Korzekwa K.R., Krausz K.W., Gonzalez F.J., Gelboin H.V. Role of Human Cytochrome P450 3A4 and 3A5 in the Metabolism of Taxotere and Its Derivatives: Enzyme Specificity, Interindividual Distribution and Metabolic Contribution in Human Liver. Pharmacogenetics 1998; 8: 391–401
  • Nadin L., Murray M. Participation of CYP2C8 in Retinoic Acid 4-Hydroxylation in Human Hepatic Microsomes. Biochem. Pharmacol. 1999; 58: 1201–1208

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.