243
Views
46
CrossRef citations to date
0
Altmetric
Research Article

Hepatic Cytochrome P450 Degradation: Mechanistic Diversity of the Cellular Sanitation Brigade

Pages 107-143 | Published online: 28 Jul 2003

References

  • Adeli K. Regulated intracellular degradation of apolipoprotein B in semipermeable HepG2 cells. J. Biol. Chem. 1994; 269: 9166–9175
  • Ahlberg J., Berkenstam A., Henell F., Glaumann H. Degradation of short and long lived proteins in isolated rat liver lysosomes. Effects of pH, temperature, and proteolytic inhibitors. J. Biol. Chem. 1985; 260: 5847–5854
  • Amara J. F., Lederkremer G., Lodish H. F. Intracellular degradation of unassembled asialoglycoprotein receptor subunits: a pre-Golgi, nonlysosomal endoproteolytic cleavage. J. Cell Biol. 1989; 109: 3315–3324
  • Banerjee A., Kocarek T. A., Novak R. F. Identification of a ubiquitination-target/substrate-interaction domain of cytochrome P-450 (CYP) 2E1. Drug Metab. Dispos. 2000; 28: 118–124
  • Bardag-Gorce F., Li J., French B. A., French S. W. Ethanol withdrawal induced CYP2e1 degradation in vivo blocked by proteasome inhibitor PS-341. Free Radic. Biol. Med. 2002; 32: 17–21
  • Barmada S., Kienle E., Koop D. R. Rabbit P450 2E1 expressed in CHO-K1 cells has a short half-life. Biochem. Biophys. Res. Commun. 1995; 206: 601–607
  • Baumeister W., Walz J., Zühl F., Seemüller E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 1998; 92: 367–380
  • Bays N. W., Gardner R. G., Seelig L. P., Joazeiro C. A., Hampton R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat. Cell Biol. 2001a; 3: 24–29
  • Bays N., Wilhovsky S., Goradia A., Hodgkiss-Harlow K., Hampton R. HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol. Biol. Cell 2001b; 12: 4114–4128
  • Beaune P., Dansette P. M., Mansuy D., Kiffel L., Finck M., Amar C., Leroux J. P., Homberg J. C. Human anti-endoplasmic reticulum autoantibodies appearing in a drug-induced hepatitis are directed against a human liver cytochrome P-450 that hydroxylates the drug. Proc. Natl. Acad. Sci. USA 1987; 84: 551–555
  • Benharouga M., Haardt M., Kartner N., Lukacs G. COOH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments. J. Cell Biol. 2001; 153: 957–970
  • Beynon R. J., Bond J. S. Catabolism of intracellular protein: molecular aspects. Am. J. Physiol. 1986; 251: C141–C152
  • Biederer T., Volkvein C., Sommer T. Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway. EMBO J. 1996; 15: 2069–2076
  • Biederer T., Volkwein C., Sommer T. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 1997; 278: 1806–1809
  • Black S. D., Martin S. T., Smith C. A. Membrane topology of liver microsomal cytochrome P450 2B4 determined via monoclonal antibodies directed to the halt-transfer signal. Biochemistry 1994; 33: 6945–6951
  • Bock K. W., Siekevitz P. Turnover of heme and protein moieties of rat liver microsomal cytochrome b5. Biochem. Biophys. Res. Commun. 1970; 41: 374–380
  • Boitier E., Beaune P. Cytochromes P450 as targets to autoantibodies in immune mediated diseases. Mol. Asp. Med. 1999; 20: 84–137
  • Boitier E., Beaune P. Xenobiotic-metabolizing enzymes as autoantigens in human autoimmune disorders. An update. Clin. Rev. Allergy Immunol. 2000; 18: 215–239
  • Bolender R., Weibel E. A morphometric study of the removal of phenobarbital-induced membranes from hepatocytes after cessation of threatment. J. Cell Biol. 1973; 56: 746–761
  • Bonifacino J. S., Lippincott-Schwartz J. Degradation of proteins within the endoplasmic reticulum. Curr. Opin. Cell Biol. 1991; 3: 592–600
  • Bordallo J., Plemper R. K., Finger A., Wolf D. H. Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 1998; 9: 209–222
  • Bourdi M., Gautier J. C., Mircheva J., Larrey D., Guillouzo A., Andre C., Belloc C., Beaune P. H. Anti-liver microsomes autoantibodies and dihydralazine-induced hepatitis: specificity of autoantibodies and inductive capacity of the drug. Mol. Pharmacol. 1992; 42: 280–285
  • Braun S., Matuschewski K., Rape M., Thoms S., Jentsch S. Role of the ubiquitin-selective CDC48(UFD1/NPL4) chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J. 2002; 21: 615–621
  • Brown K., Gerstberger S., Carlson L., Franzoso G., Siebenlist U. Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science 1995; 267: 1485–1488
  • Busch H., Goldknopf I. L. Ubiquitin-protein conjugates. Mol. Cell. Biochem. 1981; 40: 173–187
  • Chen P., Johnson P., Sommer T., Jentsch S., Hochstrasser M. Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor. Cell 1993; 74: 357–369
  • Chen Z. J., Hagler J., Palombella V. J., Melandri F., Scherer D., Ballard D., Maniatis T. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathway. Genes Dev. 1995; 9: 1586–1597
  • Chen Z. J., Parent L., Maniatis T. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 1996; 84: 853–862
  • Chun K. T., Bar-Nun S., Simoni R. D. The regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase requires a short-lived protein and occurs in the endoplasmic reticulum. J. Biol. Chem. 1990; 265: 22004–22010
  • Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994; 79: 13–21
  • Ciechanover A., Gonen H., Elias S., Mayer A. Degradation of proteins by the ubiquitin-mediated proteolytic pathway. New Biol. 1990; 2: 227–234
  • Ciechanover A., Orian A., Schwartz A. L. The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J. Cell Biochem. 2000; 34: 40–51
  • Correia M. A. Cytochrome P450 turnover. Methods Enzymol. 1991; 206: 315–325
  • Correia M. A. Drug metabolism. Basic and Clinical Pharmacology, B. G. Katzung. 8th ed., McGraw Hill Cos., Inc. 2001; 51–63
  • Correia M. A., Litman D. A., McColl K. E. L., Schmid R., Thompson G. C. Effect of cimetidine on phenobarbitone-induced changes in hepatic cytochrome P450 and δ-aminolaevulinic acid synthase. Proc. Br. Pharmacol. 1983; C24
  • Correia M. A., Decker C., Sugiyama K., Caldera P., Bornheim L., Wrighton S. A., Rettie A. E., Trager W. F. Degradation of rat hepatic cytochrome P-450 heme by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine to irreversibly bound protein adducts. Arch. Biochem. Biophys. 1987; 258: 436–451
  • Correia M. A., Sugiyama K., Yao K. Q. Degradation of rat hepatic cytochrome P-450p. Drug Metab. Rev. 1989; 20: 615–628
  • Correia M. A., Davoll S. H., Wrighton S. A., Thomas P. E. Degradation of rat liver cytochromes P-450 3A after their inactivation by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine: characterization of the proteolytic system. Arch. Biochem. Biophys. 1992a; 297: 228–238
  • Correia M. A., Rettie A., Wrighton S. A., Waxman D. J. Differential apoprotein loss of rat liver cytochromes P-450 after their inactivation by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine: a case for distinct proteolytic mechanisms?. Arch. Biochem. Biophys. 1992b; 294: 493–503
  • Coux O., Tanaka K., Goldberg A. L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 1996; 65: 801–847
  • Cuervo A. M., Dice J. F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996; 273: 501–503
  • Cuervo A. M., Dice J. F. Lysosomes, a meeting point of proteins, chaperones, and proteases. J. Mol. Med. 1998; 76: 6–12
  • Dahlmann B., Kopp F., Kuehn L., Niedel B., Pfeifer G., Hegerl R., Baumeister W. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett. 1989; 251: 125–131
  • Dai Y., Cederbaum A. Inactivation and degradation of human cytochrome P4502E1 by CCl4 in a transfected HepG2 cell line. J. Pharmacol. Exp. Ther. 1995; 275: 1614–1622
  • Dai R., Li C. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat. Cell Biol. 2001; 3: 740–744
  • Dai R., Chen E., Longo D., Gorbea C., Li C. Involvement of valosin-containing protein, an ATPase co-purified with IkappaBalpha and 26S proteasome, in ubiquitin-proteasome-mediated degradation of IkappaBalpha. J. Biol. Chem. 1998; 273: 3562–3573
  • Dansette P. M., Bonierbale E., Minoletti C., Beaune P. H., Pessayre D., Mansuy D. Drug-induced immunotoxicity. Eur. J. Drug Metab. Pharmacokinet. 1998; 23: 443–451
  • Davies H. S., Britt S. G., Pohl L. R. Carbon tetrachloride and 2-isopropyl-4-pentenamide-induced inactivation of cytochrome P-450 leads to heme-derived protein adducts. Arch. Biochem. Biophys. 1986; 244: 352–357
  • De Lemos-Chiarandini C., Frey A. B., Sabatini D. D., Kreibich G. Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies. J. Cell Biol. 1987; 104: 209–219
  • DeMartino G. N., Moomaw C. R., Zagnitko O. P., Proske R. J., Chu-Ping M., Afendis S. J., Swaffield J. C., Slaughter C. A. PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family. J. Biol. Chem. 1994; 269: 20878–20884
  • Desautels M., Goldberg A. L. Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins. Proc. Natl. Acad. Sci. USA 1982; 79: 1869–1873
  • Dice J. F. Molecular determinants of protein half-lives in eukaryotic cells. FASEB J. 1987; 1: 349–357
  • Dice J. F., Terlecky S. R., Chiang H. L., Olson T. S., Isenman L. D., Short-Russell S. R., Freundlieb S., Terlecky L. J. A selective pathway for degradation of cytosolic proteins by lysosomes. Semin. Cell Biol. 1990; 1: 449–455
  • Dick L. R., Cruikshank A. A., Grenier L., Melandri F. D., Nunes S. L., Stein R. L. Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin beta-lactone. J. Biol. Chem. 1996; 271: 7273–7276
  • Dick L. R., Cruikshank A. A., Destree A. T., Grenier L., McCormack T. A., Melandri F. D., Nunes S. L., Palombella V. J., Parent L. A., Plamondon L., Stein R. L. Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J. Biol. Chem. 1997; 272: 182–188
  • Druyan R., DeBernard B., Rabinowitz M. Turnover of cytochromes labeled with delta-aminolevulinic acid-3H in rat liver. J. Biol. Chem. 1969; 244: 5874–5878
  • Dunlop R. A., Rodgers K. J., Dean R. T. Recent developments in the intracellular degradation of oxidized proteins. Free Radic. Biol. Med. 2002; 33: 894–906
  • Duque-Magalhaes M. C., Gualberto J. M. Regulation of mitochondrial proteolysis. Selective degradation of inner membrane polypeptides. FEBS Lett. 1987; 210: 142–146
  • Edwards R. J., Murray B. P., Singleton A. M., Boobis A. R. Orientation of cytochromes P450 in the endoplasmic reticulum. Biochemistry 1991; 30: 71–76
  • Eliasson E., Johansson I., Ingelman-Sundberg M. Substrate-, hormone-, and cAMP-regulated cytochrome P450 degradation. Proc. Natl. Acad. Sci. USA 1990; 87: 3225–3229
  • Eliasson E., Mkrtchian S., Ingelman-Sundberg M. Hormone- and substrate-regulated intracellular degradation of cytochrome P450 (2E1) involving MgATP-activated rapid proteolysis in the endoplasmic reticulum membranes. J. Biol. Chem. 1992; 267: 15765–15769
  • Eliasson E., Mkrtchian S., Halpert J. R., Ingelman-Sundberg M. Substrate-regulated, cAMP-dependent phosphorylation, denaturation, and degradation of glucocorticoid-inducible rat liver cytochrome P450 3A1. J. Biol. Chem. 1994; 269: 18378–18383
  • Etlinger J. D., Goldberg A. L. Control of protein degradation in reticulocytes and reticulocyte extracts by hemin. J. Biol. Chem. 1980; 255: 4563–4568
  • Evans P. J., Mayer R. J. Comparison of the degradative fate of monoamine oxidase in endogenous and transplanted mitochondrial outer membrane in rat hepatocytes. Implications for the cytomorphological basis of protein catabolism. Biochem. J. 1984; 219: 61–72
  • Finley D. Ubiquitin chained and crosslinked. Nat. Cell Biol. 2002; 4: E121–E123
  • Freeman J. E., Wolf C. R. Evidence against a role for serine 129 in determining murine cytochrome P450 Cyp2E-1 protein levels. Biochemistry 1994; 33: 13963–13966
  • Furuno K., Ishikawa T., Kato K. Isolation and characterization of autolysosomes which appeared in rat liver after leupeptin treatment. J. Biochem. 1982; 91: 1943–1950
  • Fusauchi Y., Iwai K. Tetrahymena ubiquitin-histone conjugate uH2A. Isolation and structural analysis. J. Biochem. 1985; 97: 1467–1476, (Tokyo)
  • Galan J. M., Cantegrit B., Garnier C., Namy O., Haguenauer-Tsapis R. ‘ER degradation’ of a mutant yeast plasma membrane protein by the ubiquitin-proteasome pathway. FASEB J. 1998; 12: 315–323
  • Gardner R., Hampton R. A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes. J. Biol. Chem. 1999a; 274: 31671–31678
  • Gardner R. G., Hampton R. Y. A ‘distributed degron’ allows regulated entry into the ER degradation pathway. EMBO J. 1999b; 18: 5994–6004
  • Gardner R., Cronin S., Leader B., Rine J., Hampton R., Leder B. Sequence determinants for regulated degradation of yeast 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 1998; 9: 2611–2626
  • Gardner R. G., Swarbrick G. M., Bays N. W., Cronin S. R., Wilhovsky S., Seelig L., Kim C., Hampton R. Y. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of hrd1p by hrd3p. J. Cell Biol. 2000; 151: 69–82
  • Gardner R., Shearer A., Hampton R. In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol. Cell Biol. 2001; 21: 4276–4291
  • Gasser R., Hauri H. P., Meyer U. A. The turnover of cytochrome P450b. FEBS Lett. 1982; 147: 239–242
  • Ghoda L., Sidney D., Macrae M., Coffino P. Structural elements of ornithine decarboxylase required for intracellular degradation and polyamine-dependent regulation. Mol. Cell Biol. 1992; 12: 2178–2185
  • Gilon T., Chomsky O., Kulka R. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae. EMBO J. 1998; 17: 2759–2766
  • Glickman M. H., Rubin D. M., Fried V. A., Finley D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell Biol. 1998; 18: 3149–3162
  • Glotzer M., Murray A., Kirschner M. Cyclin is degraded by the ubiquitin pathway. Nature 1991; 349: 132–138
  • Goasduff T., Cederbaum A. I. NADPH-dependent microsomal electron transfer increases degradation of CYP2E1 by the proteasome complex: role of reactive oxygen species. Arch. Biochem. Biophys. 1999; 370: 258–270
  • Goasduff T., Cederbaum A. I. CYP2E1 degradation by in vitro reconstituted systems: role of the molecular chaperone hsp90. Arch. Biochem. Biophys. 2000; 379: 321–330
  • Goldberg A. L. ATP-dependent proteases in prokaryotic and eukaryotic cells. Semin. Cell Biol. 1991; 1: 423–432
  • Goldberg A. L., Rock K. L. Proteolysis, proteasomes and antigen presentation. Nature 1992; 357: 375–379
  • Gonzalez F. J. The molecular biology of cytochrome P450s. Pharm. Rev. 1989; 40: 243–288
  • Gorsky L. D., Koop D. R., Coon M. J. On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P-450. Products of oxygen reduction. J. Biol. Chem. 1984; 259: 6812–6817
  • Gotoh O. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 1992; 267: 83–90
  • Guengerich P. Covalent binding to apoprotein is a major fate of heme in a variety of reactions in which cytochrome P-450 is destroyed. Biochem. Biophys. Res. Commun. 1986; 138: 193–198
  • Guengerich F. P. Mammalian Cytochromes P450. CRC Press, Boca Raton, FL 1987; Vol. 1 & 2
  • Guengerich F. P. Human cytochrome P450 enzymes. Cytochrome P450: Structure, Mechanism and Biochemistry, P. R. Ortiz de Montellano. Plenum Press, New York, NY 1995; 473–574
  • Haas A. L., Rose I. A. Hemin inhibits ATP-dependent ubiquitin-dependent proteolysis: role of hemin in regulating ubiquitin conjugate degradation. Proc. Natl. Acad. Sci. USA 1981; 78: 6845–6848
  • Haas A. L., Siepmann T. J. Pathways of ubiquitin conjugation. FASEB J. 1997; 11: 1257–1268
  • Haas A. L., Murphy K. E., Bright P. M. The inactivation of ubiquitin accounts for the inability to demonstrate ATP, ubiquitin-dependent proteolysis in liver extracts. J. Biol. Chem. 1985; 260: 4694–4703
  • Hampton R. Y. ER-associated degradation in protein quality control and cellular regulation. Curr. Opin. Cell Biol. 2002; 14: 476–482
  • Hampton R. Y., Bhakta H. Ubiquitin-mediated regulation of 3-hydroxy-3-methylglutaryl-CoA reductase. Proc. Natl. Acad. Sci. USA 1997; 94: 12944–12948
  • Hampton R. Y., Rine J. Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J. Cell Biol. 1994; 125: 299–312
  • Hampton R. Y., Gardner R. G., Rine J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 1996; 7: 2029–2044
  • He K., Bornheim L. M., Falick A. M., Maltby D., Yin H., Correia M. A. Identification of the heme-modified peptides from cumene hydroperoxide-inactivated cytochrome P450 3A4. Biochemistry 1998a; 37: 17448–17457
  • He K., Iyer K. R., Hayes R. N., Sinz M. W., Woolf T. F., Hollenberg P. F. Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice. Chem. Res. Toxicol. 1998b; 11: 252–259
  • Hershko A. Ubiquitin-mediated protein degradation. J. Biol. Chem. 1988; 263: 15237–15240
  • Hershko A. The ubiquitin pathway of protein degradation and proteolysis of ubiquitin-protein conjugates. Biochem. Soc. Trans. 1991; 19: 726–729
  • Hershko A., Ciechanover A. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 1992; 61: 761–807
  • Hershko A., Ciechanover A. The ubiquitin system. Annu. Rev. Biochem. 1998; 67: 425–479
  • Hershko A., Heller H., Elias S., Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 1983; 258: 8206–8214
  • Hill K., Cooper A. A. Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system. EMBO J. 2000; 19: 550–561
  • Hochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol. 1995; 7: 215–223
  • Hochstrasser M. Protein degradation or regulation: Ub the judge. Cell 1996; 84: 813–815
  • Hochstrasser M., Varshavsky A. In vivo degradation of a transcriptional regulator: the yeast alpha 2 repressor. Cell 1990; 61: 697–708
  • Hoppe T., Matuschewski K., Rape M., Schlenker S., Ulrich H., Jentsch S. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 2000; 102: 577–586
  • Hough R. F., Pratt G. W., Rechsteiner M. Ubiquitin/ATP-dependent protease. Ubiquitin, M. Rechsteiner. Plenum Publishing Corp., New York, NY 1988; 101–134
  • Huan J., Koop D. R. Effects of C-terminal truncation on the turnover and function of cytochrome P450 2E1. The Toxicologist 1999; 48: 409
  • Huan J., Parazin J. C., Koop D. R. Distinct proteolytic pathways in the degradation of CYP2E1 and CYP2B1 expressed in Tet-Hela cells. Fundam. Appl. Toxicol. 1997; 36: 84
  • Ingelman-Sundberg M., Johansson I. Mechanisms of hydroxyl radical formation and ethanol oxidation by ethanol-inducible and other forms of rabbit liver microsomal cytochromes P-450. J. Biol. Chem. 1984; 259: 6447–6458
  • Jansson I., Curti M., Epstein P. M., Peterson J. A., Schenkman J. B. Relationship between phosphorylation and cytochrome P450 destruction. Arch. Biochem. Biophys. 1990; 283: 285–292
  • Jarosch E., Taxis C., Volkwein C., Bordallo J., Finley D., Wolf D., Sommer T. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat. Cell Biol. 2002; 4: 134–139
  • Johnson P., Swanson R., Rakhilina L., Hochstrasser M. Degradation signal masking by heterodimerization of MATalpha2 and MATa1 blocks their mutual destruction by the ubiquitin-proteasome pathway. Cell 1998; 94: 217–227
  • Kaplan K. B., Hyman A. A., Sorger P. K. Regulating the yeast kinetochore by ubiquitin-dependent degradation and Skp1p-mediated phosphorylation. Cell 1997; 91: 491–500
  • Kemper B., Szczesna-Skorupa E. Cytochrome P-450 membrane signals. Drug Metab. Rev. 1989; 20: 811–820
  • King R., Glotzer M., Kirschner M. Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol. Biol. Cell 1996; 7: 1343–1357
  • Klausner R. D., Sitia R. Protein degradation in the endoplasmic reticulum. Cell 1990; 62: 611–614
  • Kloetzel P. Antigen processing by the proteasome. Nat. Rev. Mol. Cell Biol. 2001; 2: 179–187
  • Koch J. A., Waxman D. J. Posttranslational modification of hepatic cytochrome P-450. Phosphorylation of phenobarbital-inducible P-450 forms PB-4 (IIB1) and PB-5 (IIB2) in isolated rat hepatocytes and in vivo. Biochemistry 1989; 28: 3145–3152
  • Koop, D. R. (2002). Induction of CYP2E1 as a result of an inhibition of proteasome function. EB Symposium on “Posttranscriptional Regulation of Drug Metabolizing Enzymes”. New Orleans.
  • Kopitz J., Kisen G. O., Gordon P. B., Bohley P., Seglen P. O. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J. Cell Biol. 1990; 111: 941–953
  • Korsmeyer K. K., Davoll S., Figueiredo-Pereira M. E., Correia M. A. Proteolytic degradation of heme-modified hepatic cytochromes p450: a role for phosphorylation, ubiquitination and the 26S proteasome?. Arch. Biochem. Biophys. 1999; 365: 31–44
  • Le A., Ferrell G. A., Dishon D. S., Le Q. Q., Sifers R. N. Soluble aggregates of the human PiZ α1-antitrypsin variant are degraded within the endoplasmic reticulum by a mechanism sensitive to inhibitors of protein synthesis. J. Biol. Chem. 1992; 267: 1072–1080
  • Lee F. S., Hagler J., Chen Z. J., Maniatis T. Activation of the IkappaB alpha kinase complex by MEKK1, a kinase of the JNK pathway. Cell 1997; 88: 213–222
  • Leeder J. S., Gaedigk A., Lu X., Cook V. A. Epitope mapping studies with human anti-cytochrome P450 3A antibodies. Mol. Pharmacol. 1996; 49: 234–243
  • Lenk U., Sommer T. Ubiquitin-mediated proteolysis of a short-lived regulatory protein depends on its cellular localization. J. Biol. Chem. 2000; 275: 39403–39410
  • Li X., Coffino P. Degradation of ornithine decarboxylase: exposure of the C-terminal target by a polyamine-inducible inhibitory protein. Mol. Cell Biol. 1993; 13: 2377–2383
  • Licad-Coles E., He K., Yin H., Correia M. A. Cytochrome P450 2C11: Escherichia coli expression, purification, functional characterization, and mechanism-based inactivation of the enzyme. Arch. Biochem. Biophys. 1997; 338: 35–42
  • Lippincott-Schwartz J., Bonifacino J. S., Yuan L. C., Klausner R. D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 1988; 54: 209–220
  • Liu Z. X., Kaplowitz N. Immune-mediated drug-induced liver disease. Clin. Liver Dis. 2002; 6: 467–486
  • Löhr J. B., Kühn-Velten W. N. Protein phosphorylation changes ligand-binding efficiency of cytochrome P450c17 (CYP17) and accelerates its proteolytic degradation: putative relevance for hormonal regulation of CYP17 activity. Biochem. Biophys. Res. Commun. 1997; 231: 403–408
  • Lord J., Davey J., Frigerio L., Roberts L. Endoplasmic reticulum-associated protein degradation. Semin. Cell Dev. Biol. 2000; 11: 159–164
  • Lown K. S., Bailey D. G., Fontana R. J., Janardan S. K., Adair C. H., Fortlage L. A., Brown M. B., Guo W., Watkins P. B. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J. Clin. Investig. 1997; 599: 2545–2553
  • Lu P., Zhou X., Shen M., Lu K. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 1999; 283: 1325–1328
  • Masaki R., Matsuura S., Tashiro Y. A biochemical and electron microscopic study of changes in the content of cytochrome P-450 in rat livers after cessation of treatment with phenobarbital, beta-naphtoflavone or 3-methylcholanthrene. Cell Struct. Funct. 1984; 9: 53–66
  • Masaki R., Yamamoto A., Tashiro Y. Cytochrome P-450 and NADPH-cytochrome P-450 reductase are degraded in the autolysosomes in rat liver. J. Cell Biol. 1987; 104: 1207–1215
  • McCracken A. A., Brodsky J. L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 1996; 132: 291–298
  • McGee T. P., Cheng H. H., Kumagai H., Omura S., Simoni R. D. Degradation of 3-hydroxy-3-methylglutaryl-CoA reductase in endoplasmic reticulum membranes is accelerated as a result of increased susceptibility to proteolysis. J. Biol. Chem. 1996; 271: 25630–25638
  • Menez J. F., Machu T. K., Song B. J., Browning M. D., Deitrich R. A. Phosphorylation of cytochrome P4502E1 (CYP2E1) by calmodulin dependent protein kinase, protein kinase C and cAMP dependent protein kinase. Alcohol Alcohol. 1993; 28: 445–451
  • Meyer H., Shorter J., Seemann J., Pappin D., Warren G. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 2000; 19: 2181–2192
  • Michalek M. T., Grant E. P., Gramm C., Goldberg A. L., Rock K. L. A role for the ubiquitin-dependent proteolytic pathway in MHC class I-restricted antigen presentation. Nature 1993; 363: 552–554
  • Miyamoto S., Maki M., Schmitt M. J., Hatanaka M., Verma I. M. Tumor necrosis factor alpha-induced phosphorylation of I kappa B alpha is a signal for its degradation but not dissociation from NF-kappa B. Proc. Natl. Acad. Sci. USA 1994; 91: 12740–12744
  • Monaco J. J. Pathways for the processing and presentation of antigens to T cells. J. Leukoc. Biol. 1995; 57: 543–547
  • Monier S., Van Luc P., Kreibich G., Sabatini D. D., Adesnik M. Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane. J. Cell Biol. 1988; 107: 457–470
  • Müller R., Schmidt W. E., Stier A. The site of cyclic AMP-dependent protein kinase catalyzed phosphorylation of cytochrome P-450 LM2. FEBS Lett. 1985; 187: 21–24
  • Murakami K., Mihara K., Omura T. The transmembrane region of microsomal cytochrome P450 identified as the endoplasmic reticulum retention signal. J. Biochem. 1994; 116: 164–175, (Tokyo)
  • Murray B. P., Correia M. A. Ubiquitin-dependent 26S proteasomal pathway: a role in the degradation of the native human liver CYP3A4 expressed in Saccharomyces cerevisiae?. Arch. Biochem. Biophys. 2001; 393: 106–116
  • Murray B. M., Zgoda V. G., Correia M. A. Native CYP2C11: heterologous expression in Saccharomyces cerevisiae reveals a role for vacuolar proteases rather than the ubiquitin-26S proteasome system in the degradation of this endoplasmic reticulum enzyme. Mol. Pharmacol. 2002; 61: 1146–1153
  • Nelson D. R. Cytochrome P450 nomenclatures and alignment of selected sequences. Cytochrome P450: Structure, Function, and Mechanism, P. R. Ortiz de Montellano. 2nd ed., Plenum Press, New York, NY 1995; 575–606
  • Nelson D. R., Strobel H. W. On the membrane topology of vertebrate cytochrome P-450 proteins. J. Biol. Chem. 1988; 263: 6038–6050
  • Nichols J. C., Bronk S. F., Mellgren R. L., Gores G. J. Inhibition of nonlysosomal calcium-dependent proteolysis by glycine during anoxic injury of rat hepatocytes. Gastroenterology 1994; 106: 168–176
  • Nishizawa M., Furuno N., Okazaki K., Tanaka H., Ogawa Y., Sagata N. Degradation of Mos by the N-terminal proline (pro2)-dependent ubiquitin pathway on fertilization of Xenopus eggs: possible significance of natural selection for Pro2 in Mos. EMBO J. 1993; 12: 4021–4027
  • Novikoff A., Shin W. Y. Endoplasmic reticulum and autophagy in rat hepatocytes. Proc. Natl. Acad. Sci. USA 1978; 75: 5039–5502
  • Oesch-Bartlomowicz B., Oesch F. Phosphorylation of cytochrome P450 isoenzymes in intact hepatocytes and its importance for their function in metabolic processes. Arch. Toxicol. 1990; 64: 257–261
  • Orlowski M., Cardozo C., Michaud C. Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 1993; 32: 1563–1572
  • Ortiz de Montellano P. R. Cytochrome P450: Structure, Mechanism and Biochemistry, P. R. Ortiz de Montellano. Plenum Press, New York, NY 1986; 217–271
  • Ortiz de Montellano P. R., Correia M. A. Inhibition of cytochrome P450 enzymes. Cytochrome P450: Structure, Mechanism and Biochemistry, P. R. Ortiz de Montellano. Plenum Press, New York, NY 1995; 305–364
  • Ortiz de Montellano P. R., Mathews J. M. Autocatalytic alkylation of the cytochrome P-450 prosthetic haem group by 1-aminobenzotriazole. Isolation of an NN-bridged benzyne-protoporphyrin IX adduct. Biochem. J. 1981; 195: 761–764
  • Ortiz de Montellano P. R., Kunze K. L., Cole S. P., Marks G. S. Differential inhibition of hepatic ferrochelatase by the isomers of N-ethylprotoporphyrin IX. Biochem. Biophys. Res. Commun. 1981; 103: 581–586
  • Osawa Y., Pohl L. R. Covalent bonding of the prosthetic heme to protein: a potential mechanism for the suicide inactivation or activation of hemoproteins. Chem. Res. Toxicol. 1989; 2: 131–141
  • Parkinson A., Thomas P. E., Ryan D. E., Levin W. The in vivo turnover of rat liver microsomal epoxide hydrolase and both the apoprotein and heme moieties of specific cytochrome P-450 isozymes. Arch. Biochem. Biophys. 1983a; 225: 216–236
  • Parkinson A., Thomas P. E., Ryan D. E., Reik L. M., Safe S. H., Robertson L. W., Levin W. Differential time course of induction of rat liver microsomal cytochrome P-450 isozymes and epoxide hydrolase by Aroclor 1254. Arch. Biochem. Biophys. 1983b; 225: 203–215
  • Pereira M. E., Nguyen T., Wagner B. J., Margolis J. W., Yu B., Wilk S. 3,4-Dichloroisocoumarin-induced activation of the degradation of β-Casein by the bovine pituitary multicatalytic proteinase complex. J. Biol. Chem. 1992; 267: 7949–7955
  • Peters J-M., King R. W., Deshaies R. J. Cell cycle control by ubiquitin-dependent proteolysis. Ubiquitin and the Biology of the Cell, J. M. Peters, J. R. Harris, D. Finley. Plenum Press, New York, NY 1998; 345–387
  • Pickart C. M. Targeting of substrates to the 26S proteasome. FASEB J. 1997; 11: 1055–1066
  • Plemper R. K., Wolf D. H. Endoplasmic reticulum degradation. Reverse protein transport and its end in the proteasome. Mol. Biol. Rep. 1999; 26: 125–130
  • Plemper R. K., Bordallo J., Deak P. M., Taxis C., Hitt R., Wolf D. H. Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J. Cell Sci. 1999; 112: 4123–4134
  • Poole B., Leighton F., De Duve C. The synthesis and turnover of rat liver peroxisomes. II. Turnover of peroxisome proteins. J. Cell Biol. 1969; 41: 536–546
  • Price V. E., Sterling W. R., Tarantola V. R., Hartley R. W., Jr, Rechcigl M., Jr. The kinetics of catalase synthesis and destruction in vivo. J. Biol. Chem. 1962; 237: 3468–3475
  • Pyerin W., Taniguchi H. Phosphorylation of hepatic phenobarbital-inducible cytochrome P-450. EMBO J. 1989; 8: 3003–3010
  • Pyerin W., Wolf C. R., Kinzel V., Kubler D., Oesch F. Phosphorylation of cytochrome-P-450-dependent monooxygenase components. Carcinogenesis 1983; 4: 573–576
  • Pyerin W., Taniguchi H., Horn F., Oesch F., Amelizad Z., Friedberg T., Wolf C. R. Isoenzyme-specific phosphorylation of cytochromes P-450 and other drug metabolizing enzymes. Biochem. Biophys. Res. Commun. 1987; 142: 885–892
  • Qu D., Teckman J. H., Omura S., Perlmutter D. H. Degradation of a mutant secretory protein, α1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J. Biol. Chem. 1996; 271: 22791–22795
  • Rabinovich E., Kerem A., Frohlich K., Diamant N., Bar-Nun S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell Biol. 2002; 22: 626–634
  • Ravid T., Avner R., Polak-Charcon S., Faust J., Roitelman J. Impaired regulation of 3-hydroxy-3-methylglutaryl-coenzyme. A reductase degradation in lovastatin-resistant cells. J. Biol. Chem. 1999; 274: 29341–29351
  • Rechsteiner M., Hoffman L., Dubiel W. The multicatalytic and 26S proteases. J. Biol. Chem. 1993; 268: 6065–6068
  • Riley R. J., Smith G., Wolf C. R., Cook V. A., Leeder J. S. Human anti-endoplasmic reticulum autoantibodies produced in aromatic anticonvulsant hypersensitivity reactions recognise rodent CYP3A proteins and a similarly regulated human P450 enzyme(s). Biochem. Biophys. Res. Commun. 1993; 191: 32–40
  • Roberts B. J. Evidence of proteasome-mediated cytochrome P-450 degradation. J. Biol. Chem. 1997; 272: 9771–9778
  • Roberts B. J., Song B. J., Soh Y., Park S. S., Shoaf S. E. Ethanol induces CYP2E1 by protein stabilization. Role of ubiquitin conjugation in the rapid degradation of CYP2E1. J. Biol. Chem. 1995; 270: 29632–29635
  • Rock K. L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A. L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994; 78: 761–771
  • Rogers S., Wells R., Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 1986; 234: 364–368
  • Ronis M. J., Ingelman-Sundberg M. Acetone-dependent regulation of cytochrome P-450j (IIE1) and P-450b (IIB1) in rat liver. Xenobiotica 1989; 19: 1161–1165
  • Ronis M. J., Johansson I., Hultenby K., Lagercrantz J., Glaumann H., Ingelman-Sundberg M. Acetone-regulated synthesis and degradation of cytochrome P450E1 and cytochrome P4502B1 in rat liver. Eur. J. Biochem. 1991; 198: 383–389
  • Rupp S., Wolf D. H. Biogenesis of the yeast vacuole (lysosome). The use of active-site mutants of proteinase yscA to determine the necessity of the enzyme for vacuolar proteinase maturation and proteinase yscB stability. Eur. J. Biochem. 1995; 231: 115–125
  • Sadano H., Omura T. Turnover of two drug-inducible forms of microsomal cytochrome P-450 in rat liver. J. Biochem. 1983; 93: 1375–1383, (Tokyo)
  • Sakaguchi M., Omura T. Topology and biogenesis of microsomal cytochrome P-450s. Frontiers in Biotransformation, K. Ruckpaul, H. Reim. Academic Verlag. 1993; Vol. 8: 59–73
  • Sato R., Omura T. Molecular properties. Cytochrome P-450. Academic Press, New York, NY 1978; 37–135
  • Sato T., Sakaguchi M., Mihara K., Omura T. The amino-terminal structures that determine topological orientation of cytochrome P-450 in microsomal membrane. EMBO J. 1990; 9: 2391–2397
  • Scheffner M., Smith S., Jentsch S. The ubiquitin conjugation system. Ubiquitin and the Biology of the Cell, J. M. Peters, J. R. Harris, D. Finley. Plenum Press, New York, NY 1998; 65–98
  • Schimke R. T., Sweeney E. W., Berlin C. M. The roles of synthesis and degradation in the control of rat liver tryptophan pyrrolase. J. Biol. Chem. 1965; 40: 322–331
  • Schmidt M., Kloetzel P. M. Biogenesis of eukaryotic 20S proteasomes: the complex maturation pathway of a complex enzyme. FASEB J. 1997; 11: 1235–1243
  • Schmiedlin-Ren P., Edwards D. J., Fitzsimmons M. E., He K., Lown K. S., Woster P. M., Rahman A., Thummel K. E., Fisher J. M., Hollenberg P. F., Watkins P. B. Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents. Decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins. Drug Metab. Dispos. 1997; 25: 1228–1233
  • Seglen P. O. Regulation of autophagic protein degradation in isolated liver cells. Lysosomes: Their Role in Protein Breakdown, H. Glaumann, F. J. Ballard. Academic Press, London 1987; 371–414
  • Seglen P. O., Gordon P. B., Tolleshaug H., Hoyvik H. Pathways of intracellular sequestration and protein degradation in isolated rat hepatocytes. Prog. Clin. Biol. Res. 1985; 180: 437–446
  • Shiraki H., Guengerich F. P. Turnover of membrane proteins: kinetics of induction and degradation of seven forms of rat liver microsomal cytochrome P-450, NADPH-cytochrome P-450 reductase, and epoxide hydrolase. Arch. Biochem. Biophys. 1984; 235: 86–96
  • Shringarpure R., Grune T., Davies K. J. A. Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell. Mol. Life Sci. 2001; 58: 1442–1450
  • Sohn D. H., Yun Y. P., Park K. S., Veech R. L., Song B. J. Post-translational reduction of cytochrome P450IIE by CCl4, its substrate. Biochem. Biophys. Res. Commun. 1991; 179: 449–454
  • Sokolik C. W., Cohen R. E. The structures of ubiquitin conjugates of yeast iso-2-cytochrome c. J. Biol. Chem. 1991; 266: 9100–9107
  • Sokolik C. W., Cohen R. E. Ubiquitin conjugation to cytochromes c. Structure of the yeast ISO-1 conjugate and possible recognition determinants. J. Biol. Chem. 1992; 267: 1067–1071
  • Sommer T., Jentsch S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 1993; 365: 176–179
  • Sommer T., Wolf D. H. Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J. 1997; 11: 1227–1233
  • Song B. J., Veech R. L., Park S. S., Gelboin H. V., Gonzalez F. J. Induction of rat hepatic N-nitrosodimethylamine demethylase by acetone is due to protein stabilization. J. Biol. Chem. 1989; 264: 3568–3572
  • Sorimachi H., Saido T. C., Suzuki K. New era of calpain research. Discovery of tissue-specific calpains. FEBS Lett. 1994; 343: 1–5
  • Stafford F. J., Bonifacino J. S. A permeabilized cell system identifies the endoplasmic reticulum as a site of protein degradation. J. Cell Biol. 1991; 115: 1225–1236
  • Stellwagen R. H. Involvement of sequences near both amino and carboxyl termini in the rapid intracellular degradation of tyrosine aminotransferase. J. Biol. Chem. 1992; 267: 23713–23721
  • Steward A. R., Wrighton S. A., Pasco D. S., Fagan J. B., Li D., Guzelian P. S. Synthesis and degradation of 3-methylcholanthrene-inducible cytochromes P-450 and their mRNAs in primary monolayer cultures of adult rat hepatocytes. Arch. Biochem. Biophys. 1985; 241: 494–508
  • Szczesna-Skorupa E., Ahn K., Chen C. D., Doray B., Kemper B. The cytoplasmic and N-terminal transmembrane domains of cytochrome P450 contain independent signals for retention in the endoplasmic reticulum. J. Biol. Chem. 1995; 270: 24327–24333
  • Tanaka K., Yoshimura T., Ichihara A., Ikai A., Nishigai M., Morimoto Y., Sato M., Tanaka N., Katsube Y., Kameyama K., et al. Molecular organization of a high molecular weight multi-protease complex from rat liver. J. Mol. Biol. 1988; 203: 985–996
  • Taniguchi H., Pyerin W., Stier A. Conversion of hepatic microsomal cytochrome P-450 to P-420 upon phosphorylation by cyclic AMP dependent protein kinase. Biochem. Pharmacol. 1985; 34: 1835–1837
  • Tierney D. J., Haas A. L., Koop D. R. Degradation of cytochrome P450 2E1: selective loss after labilization of the enzyme. Arch. Biochem. Biophys. 1992; 293: 9–16
  • Tiwari S., Weissman A. Endoplasmic reticulum (ER)-associated degradation of T cell receptor subunits. Involvement of ER-associated ubiquitin-conjugating enzymes (E2s). J. Biol. Chem. 2001; 276: 16193–16200
  • Tsuji H., Akasaki K. Identification and characterization of lysosomal enzymes involved in the proteolysis of phenobarbital-inducible cytochrome P450. Biol. Pharm. Bull. 1994; 17: 568–571
  • Ueno T., Muno D., Kominami E. Membrane markers of endoplasmic reticulum preserved in autophagic vacuolar membranes isolated from leupeptin-administered rat liver. J. Biol. Chem. 1991; 266: 18995–18999
  • Van Den Hazel H. B., Kielland-Brandt M. C., Winther J. R. Biosynthesis and function of yeast vacuolar proteases. Yeast 1996; 12: 1–16
  • Varshavsky A. The N-end rule. Cell 1992; 69: 725–735
  • Verma R., Annan R. S., Huddleston M. J., Carr S. A., Reynard G., Deshaies R. J. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 1997; 278: 455–460
  • Vierstra R. D., Sullivan M. L. Hemin inhibits ubiquitin-dependent proteolysis in both a higher plant and yeast. Biochemistry 1988; 27: 3290–3295
  • von Wachenfeldt C., Johnson E. F. Structures of eukaryotic cytochrome P450 enzymes. Cytochrome P450: Structure, Mechanism and Biochemistry, P. R. Ortiz de Montellano. Plenum Press, New York, NY 1995; 183–223
  • Wang H., Figueiredo-Pereira M. E., Correia M. A. CYP 3A degradation in isolated rat liver hepatocytes: 26S proteasome inhibitors as probes. Arch. Biochem. Biophys. 1999; 365: 45–53
  • Wang X., Medzihradszky K. F., Maltby D., Correia M. A. Phosphorylation of native and heme-modified CYP3A4 by protein kinase C: a mass spectrometric characterization of the phosphorylated peptides. Biochemistry 2001; 40: 11318–11326
  • Ward C. L., Kopito R. R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J. Biol. Chem. 1994; 269: 25710–25718
  • Ward C. L., Omura S., Kopito R. R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 1995; 83: 121–127
  • Watkins P. B., Wrighton S. A., Schuetz E. G., Maurel P., Guzelian P. S. Macrolide antibiotics inhibit the degradation of the glucocorticoid-responsive cytochrome P-450p in rat hepatocytes in vivo and in primary monolayer culture. J. Biol. Chem. 1986; 261: 6264–6271
  • Watkins P. B., Bond J. S., Guzelian P. S. Degradation of the hepatic cytochromes P-450. Mammalian Cytochromes P450, F. P. Guengerich. CRC Press, Inc., Boca Raton, FL 1987; Vol. 2: 173–192
  • Weissman A. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol. 2001; 2: 169–178
  • Werner E. D., Brodsky J. L., McCracken A. A. Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc. Natl. Acad. Sci. USA 1996; 93: 13797–13801
  • Whiteside S., Ernst M., LeBail O., Laurent-Winter C., Rice N., Israel A. N- and C-terminal sequences control degradation of MAD3/I kappa B alpha in response to inducers of NF-kappa B activity. Mol. Cell Biol. 1995; 15: 5339–5345
  • Wikström L., Lodish H. F. Endoplasmic reticulum degradation of a subunit of the asialoglycoprotein receptor in vitro. Vesicular transport from endoplasmic reticulum is unnecessary. J. Biol. Chem. 1992; 267: 5–8
  • Wilhovsky S., Gardner R., Hampton R. HRD gene dependence of endoplasmic reticulum-associated degradation. Mol. Biol. Cell 2000; 11: 1697–1708
  • Wilkinson K. D. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 1997; 11: 1245–1256
  • Willems A. R., Lanker S., Patton E. E., Craig K. L., Nason T. F., Mathias N., Kobayashi R., Wittenberg C., Tyers M. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 1996; 86: 453–463
  • Wrighton S. A., Vanden Branden M., Ring B. J. The human drug metabolizing cytochromes P450. J. Pharmacokinet. Biopharm. 1996; 24: 461–473
  • Wu X., Sakata N., Lele K. M., Zhou M., Jiang H., Ginsberg H. N. A two-site model for ApoB degradation in HepG2 cells. J. Biol. Chem. 1997; 272: 11575–11580
  • Yamamoto A., Masaki R., Tashiro Y. Is cytochrome P-450 transported from the endoplasmic reticulum to the Golgi apparatus in rat hepatocytes?. J. Cell Biol. 1985; 101: 1733–1740
  • Yang M. X., Cederbaum A. I. Characterization of cytochrome P4502E1 turnover in transfected HepG2 cells expressing human CYP2E1. Archiv. Biochem. Biophys. 1995; 341: 25–33
  • Yang M. X., Cederbaum A. I. Role of the proteasome complex in degradation of human CYP2E1 in transfected HepG2 cells. Biochem. Biophys. Res. Commun. 1996; 226: 711–716
  • Yao K., Falick A. M., Patel N., Correia M. A. Cumene hydroperoxide-mediated inactivation of cytochrome P450 2B1. Identification of an active site heme-modified peptide. J. Biol. Chem. 1993; 268: 59–65
  • Ye Y., Meyer H., Rapoport T. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 2001; 414: 652–656
  • Yen C., Yang Y., Ruscetti S., Kirken R., Dai R., Li C. Involvement of the ubiquitin-proteasome pathway in the degradation of nontyrosine kinase-type cytokine receptors of IL-9, IL-2, and erythropoietin. J. Immunol. 2000; 165: 6372–6380
  • Zangar R., Kimzey A., Okita J., Wunschel D., Edwards R., Kim H., Okita R. Cytochrome P450 3A conjugation to ubiquitin in a process distinct from classical ubiquitination pathway. Mol. Pharmacol. 2002; 61: 892–904
  • Zhukov A., Ingelman-Sundberg M. Selective fast degradation of cytochrome P-450 2E1 in serum-deprived hepatoma cells by a mechanism sensitive to inhibitors of vesicular transport. Eur. J. Biochem. 1997; 247: 37–43
  • Zhukov A., Werlinder V., Ingelman-Sundberg M. Purification and characterization of two membrane bound serine proteinases from rat liver microsomes active in degradation of cytochrome P450. Biochem. Biophys. Res. Commun. 1993; 197: 221–228

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.