455
Views
59
CrossRef citations to date
0
Altmetric
Research Article

Chemical-Induced Apoptosis: Formation of the Apaf-1 Apoptosome

Pages 337-363 | Published online: 12 Aug 2003

References

  • Acehan D. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell 2002; 9: 423–432
  • Adrain C., Martin S. J. The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends. Biochem. Sci. 2001; 26: 390–397
  • Adrain C., S1ee E. A., Harte M. T., Martin S. J. Regulation of apoptotic protease activating factor-1 oligomerization and apoptosis by the WD-40 repeat region. J. Biol. Chem. 1999; 274: 20855–20860
  • Almond J. Proteasome inhibitor-induced apoptosis of B-chronic lymphocytic leukaemia cells involves cytochrome c release and caspase activation, accompanied by formation of an ˜700-kDa apaf-1 containing apoptosome complex. Leukemia 2001; 15: 1388–1397
  • Antonsson B., Montessuit S., Sanchez B., Martinou J. C. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J. Biol. Chem. 2001; 276: 11615–11623
  • Beere H. M., Green D. R. Stress management—heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol. 2001; 11: 6–10
  • Beere H. M. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol. 2000; 2: 469–475
  • Benedict M. A., Hu Y., Inohara N., Nunez G. Expression and functional analysis of Apaf-1 isoforms. Extra wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J. Biol. Chem. 2000; 275: 8461–8468
  • Blanchard H. The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis. Structure Fold. Des. 1999; 7: 1125–1133
  • Boatright K. M. A unified model for apical caspase activation. Mol. Cell 2003; 11: 529–541
  • Bouillet P., Strasser A. BH3-only proteins—evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J. Cell Sci. 2002; 115: 1567–1574
  • Bratton S. B., Cohen G. M. Apoptotic death sensor: an organelle's alter ego?. Trends Pharmacol. Sci. 2001; 22: 306–315
  • Bratton S. B., MacFarlane M., Cain K., Cohen G. M. Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp. Cell Res. 2000; 256: 27–33
  • Bratton S. B. Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J. 2001a; 20: 998–1009
  • Bratton S. B., Walker G., Roberts D. L., Cain K., Cohen G. M. Caspase-3 cleaves Apaf-1 into an approximately 30-kDa fragment that associates with an inappropriately oligomerized and biologically inactive approximately 1.4 MDa apoptosome complex. Cell Death Differ. 2001b; 8: 425–433
  • Bratton S. B., Lewis J., Butterworth M., Duckett C., Cohen G. M. XIAP inhibition of caspase-3 preserves its association with the Apaf-1 apoptosome and prevents CD95-and Bax-induced apoptosis. Cell Death and Differentiation 2002; 9: 881–892
  • Bruey J. M. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol. 2000; 2: 645–652
  • Cain K., Brown D. G., Langlais C., Cohen G. M. Caspase activation involves the formation of the aposome, a large (similar to 700-kDa) caspase-activating complex. J. Biol. Chem. 1999; 274: 22686–22692
  • Cain K. Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J. Biol. Chem. 2000; 275: 6067–6070
  • Cain K., Langlais C., Sun X. M., Brown D. G., Cohen G. M. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J. Biol. Chem. in press. 2001
  • Cain K., Bratton S. B., Cohen G. M. The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie. 2002; 84: 203–214
  • Cecconi F., AlvarezBolado G., Meyer B. I., Roth K. A., Gruss P. Apaf l (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 1998; 94: 727–737
  • Chai J. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 2000; 406: 855–862
  • Chai J. Crystal structure of a procaspase-7 zymogen. Mechanisms of activation and substrate binding. Cell 2001; 107: 399–407
  • Chen F. L. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 2000; 287: 1485–1489
  • Cohen G. M. Caspases: the executioners of apoptosis. Biochem. J. 1997; 326: 1–16
  • Conradt B., Horvitz H. R. The C-elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 1998; 93: 519–529
  • Desagher S., Martinou J. C. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000; 10: 369–377
  • Deveraux Q. L., Reed T. C. IAP family proteins—suppressors of apoptosis. Genes. Dev. 1999; 13: 239–252
  • Deveraux Q. L., Takahashi R., Salvesen G. S., Reed J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997; 388: 300–304
  • Du C., Fang M., Li Y., Li L., Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42
  • Duan H. J. ICE-LAP6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B. J. Biol. Chem. 1996; 271: 16720–16724
  • Earnshaw W. C., Martins L. M., Kaufinann S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 1999; 68: 383–424
  • Ekert P. G., Silke J., Hawkins C. J., Verhagen A. M., Vaux D. L. DIABLO promotes apoptosis by removing MINA/XIAP from processed caspase 9. J. Cell Biol. 2001; 152: 483–490
  • Ellis H. M., Horvitz H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986; 44: 817–829
  • Eskes R., Desagher S., Antonsson B., Martinou J. C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 2000; 20: 929–935
  • Fearnhead H. O. Oncogene-dependent apoptosis is mediated by caspase-9. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 13664–13669
  • Freathy C., Brown D. G., Roberts R. A., Cain K. Transforming growth factor-beta(1) induces apoptosis in rat FaO hepatoma cells via cytochrome c release and oligomerization of Apaf-1 to form an approximately 700-kd apoptosome caspase-processing complex. Hepatology 2000; 32: 750–760
  • Goldstein J. C., Waterhouse N. J., Juin P., Evan G. I., Green D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biology 2000; 2: 156–162
  • Hakem R. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998; 94: 339–352
  • Hausmann G. Pro-Aopotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-x(L). J. Cell Biol. 2000; 149: 623–634
  • Hegde R. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem. 2002; 277: 432–438
  • Hengartner M. Apoptosis. Death by crowd control. Science 1998; 281: 1298–1299
  • Hengartner M. O. The biochemistry of apoptosis. Nature 2000; 407: 770–776
  • Hofmann K., Bucher P., Tschopp J. The CARD domain: a new apoptotic signalling motif. Trends Biochem. Sci. 1997; 22: 155–156
  • Holcik M., Korneluk R. G. OPINIONXIAP, the guardian angel. Nat. Rev. Mol. Cell Biol. 2001; 2: 550–556
  • Hu Y. M., Benedict M. A., Wu D. Y., Inohara N., Nunez G. Bcl-X-L interacts with Apaf-1 and inhibits Apaf-I-dependent caspase-9 activation. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 4386–4391
  • Hu Y. M., Benedict M. A., Ding L. Y., Nunez G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-I-mediated caspase-9 activation and apoptosis. EMBO J. 1999; 18: 3586–3595
  • Jiang X., Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J. Biol. Chem. 2000; 275: 31199–31203
  • Jiang X. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 2003; 299: 223–226
  • Kuida K. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998; 94: 325–337
  • Lademann U. Diarlyurea compounds inhibit caspase activation by preventing the formation of ˜700 kDa apoptosome complex. Mol. Cell Biol. in press. 2003
  • Lauber K. The adapter protein apoptotic protease-activating factor-1 (apaf-1) is proteolytically processed during apoptosis. J. Biol. Chem. 2001; 276: 29772–29781
  • Letai A. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2: 183–192
  • Li P. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479–489
  • Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147–157
  • Liu J. R. Dysfunctional apoptosome activation in ovarian cancer: implications for chemoresistance. Cancer Res. 2002; 62: 924–931
  • Martin S. J. Dealing the CARDS between life and death. Trends. Cell Biol. 2001; 11: 188–189
  • Martinou J. C., Green D. R. Breaking the mitochondrial barrier. Nat. Rev. Mol. Cell Biol. 2001; 2: 63–67
  • Martins L. M. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J. Biol. Chem. 2002; 277: 439–444
  • Marzo I. The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins. J. Exp. Med. 1998; 187: 1261–1271
  • Mittl P. R. Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-Asp-Val-Ala-Asp fluoromethyl ketone. J. Biol. Chem. 1997; 272: 6539–6547
  • Moriishi K., Huang D. C. S., Cory S., Adams J. M. Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1. Proc. Natl. Acad. Sci. U.S.A. 1999; 96: 9683–9688
  • Nguyen J. T., Wells J. A. Direct activation of the apoptosis machinery as a mechanism to target cancer cells. Proc. Natl. Acad. Sci. U.S.A. 2003; 100: 7533–7538
  • Nicholson D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999; 6: 1028–1042
  • Nicotera P., Leist M., FerrandoMay E. Apoptosis and necrosis: different execution of the same death. Biochemical Society Symposium 1999; 69–73
  • Pandey P. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 2000a; 19: 1975–1981
  • Pandey P. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 2000b; 19: 4310–4322
  • Purring-Koch C., McLendon G. Cytochrome c binding to Apaf-1: the effects of dATP and ionic strength. Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 11928–11931
  • Puthalakath H., Strasser A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 2002; 9: 505–512
  • Puthalakath H., Huang D. C. S., OReilly L. A., King S. M., Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Molecular Cell 1999; 3: 287–296
  • Qin H. X. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 1999; 399: 549–557
  • Renatus M., Stennicke H. R., Scott F. L., Liddington R. C., Salvesen G. S. Dimer formation drives the activation of the cell death protease caspase 9. Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 14250–14255
  • Riedl S. J. Structural basis for the inhibition of caspase-3 by XIAP. Cell 2001a; 104: 791–800
  • Riedl S. J. Structural basis for the activation of human procaspase-7. Proc. Natl. Acad. Sci. USA 2001b; 98: 14790–14795
  • Roberts D. L., Merrison W., MacFarlane M., Cohen G. M. The inhibitor of apoptosis protein-binding domain of Smac is not essential for its proapoptotic activity. J. Cell Biol. 2001; 153: 221–228
  • Rodriguez J., Lazebnik Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 1999; 13: 3179–3184
  • Rotonda J. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nature Structural Biology 1996; 3: 619–625
  • Saleh A., Srinivasula S. M., Acharya S., Fishel R., Alnemri E. S. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 1999; 274: 17941–17945
  • Serrone L., Hersey P. The chemoresistance of human malignant melanoma: an update. Melanoma. Res. 1999; 9: 51–58
  • Shi Y. Apoptosome: the cellular engine for the activation of caspase-9. Structure (Camb.) 2002; 10: 285–288
  • Slee E. A. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol. 1999; 144: 281–292
  • Shimizu S., Konishi A., Kodama T., Tsujimoto Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 3100–3105
  • Shimizu S., Narita M., Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999; 399: 483–487
  • Shiozaki E. N. Mechanism of XIAP-mediated inhibition of caspase-9. Mol. Cell 2003; 11: 519–527
  • Skoog L. A. B. G. Nuclear and cytoplasmic pools of deoxyribonucleoside triphosphates in chinese hamster ovary cells. J. Biol. Chem. 1974; 249: 6434–6438
  • Soengas M. S. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001; 409: 207–211
  • Srinivasula S. M. The Ced-3/interleukin 1 beta converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2 alpha are substrates for the apoptotic mediator CPP32. J. Biol. Chem. 1996; 271: 27099–27106
  • Srinivasula S. M. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J. Biol. Chem. 2000; 275: 36152–36157
  • Srinivasula S. M. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001; 410: 112–116
  • Srinivasula S. M., Ahmad M., FernandesAlnemri T., Alnemri E. S. Autoactivation of procaspase-9 by Apaf-I-mediated oligomerization. Molecular Cell 1998; 1: 949–957
  • Stennicke H. R., Salvesen G. S. Catalytic properties of the caspases. Cell Death and Differentiation 1999; 6: 1054–1059
  • Stennicke H. R. Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 1998; 273: 27084–27090
  • Stennicke H. R. Caspase-9 can be activated without proteolytic processing. J. Biol. Chem. 1999; 274: 8359–8362
  • Sun C. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 1999; 401: 818–822
  • Suzuki Y. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 2001; 8: 613–621
  • Thompson G. J., Langlais C., Cain K., Conley E. C., Cohen G. M. Elevated extracellular. Biochem. J. 2001; 357: 137–145
  • Thornberry N. A., Lazebnik Y. Caspases: enemies within. Science 1998; 281: 1312–1316
  • van Loo G. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ. 2002; 9: 1031–1042
  • Verhagen A. M. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43–53
  • Verhagen A. M. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J. Biol. Chem. 2002; 277: 445–454
  • Von Ahsen O., Waterhouse N. J., Kuwana T., Newmeyer D. D., Green D. R. The harmless release of cytochrome c. Cell Death Differ. 2000; 7: 1192–1199
  • Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982; 1: 945–951
  • Waterhouse N. J. Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J. Cell Biol. 2001; 153: 319–328
  • Wei Y. The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. Chem. Biol. 2000; 7: 423–432
  • Wilson K. P. Structure and mechanism of interleukin-1-beta converting-enzyme. Nature 1994; 370: 270–275
  • Wu G. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000; 408: 1008–1012
  • Yang X. L., Chang H. Y., Baltimore D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 1998; 281: 1355–1357
  • Yoshida H. Apafl is required for mitochondrial pathways of apoptosis and brain development. Cell 1998; 94: 739–750
  • Yu T., Wang X., Purring-Koch C., Wei Y., McLendon G. L. A mutational epitope for cytochrome C binding to the apoptosis protease activation factor-1. J. Biol. Chem. 2001; 276: 13034–13038
  • Yuan J. Y., Shaham S., LeDoux S., Ellis H. M., Horvitz H. R. The c-elegans cell-death gene ced-3 encodes a protein similar to mammalian interleukin-l-beta-converting enzyme. Cell 1993; 75: 641–652
  • Zamzami N., Kroemer G. The mitochondrion in apoptosis: how Pandora's box opens. Nat. Rev. Mol. Cell Biol. 2001; 2: 67–71
  • Zhou P., Chou J., Olea R. S., Yuan J. Y., Wagner G. Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD: a structural basis for specific adapter/caspase interaction. Proc. Natl. Acad. Sci. U.S.A. 1999; 96: 11265–11270
  • Zou H., Henzel W. J., Liu X. S., Lutschg A., Wang X. D. Apaf-1, a human protein homologous to C-elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405–413
  • Zou H., Li Y., Liu X., Wang X. An APAF-l. cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 1999; 274: 11549–11556
  • Zou H. Regulation of the Apaf-1/caspase-9 apoptosome by caspase-3 and XIAP. J. Biol. Chem. 2003; 278: 8091–8098

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.