324
Views
55
CrossRef citations to date
0
Altmetric
Research Article

The Telltale Structures of Epoxide Hydrolases

, , , &
Pages 365-383 | Published online: 12 Aug 2003

References

  • Arand M., Oesch F. Mammalian xenobiotic epoxide hydrolases. Enzyme Systems that Metabolise Drugs and Other Xenobiotics, C. Ioannides. John Wiley & Sons Ltd. 2002; pp. 459–483
  • Arand M., Knehr M., Thomas H., Zeller H.-D., Oesch F. An impaired peroxisomal targeting sequence leading to an unusual bicompartmental distribution of cytosolic epoxide hydrolase. FEBS Lett. 1991; 294: 19–22
  • Arand M., Grant D. F., Beetham J. K., Friedberg T., Oesch F., Hammock B. D. Sequence similarity of mammalian epoxide hydrolases to the bacterial haloalkane dehalogenase and other related proteins. Implication for the potential catalytic mechanism of enzymatic epoxide hydrolysis. FEBS Lett. 1994; 338: 251–256
  • Arand M., Wagner H., Oesch F. Asp333, Asp495, and His523 form the catalytic triad of rat soluble epoxide hydrolase. J. Biol. Chem. 1996; 271: 4223–4229
  • Arand M., Hemmer H., Dürk H., Baratti J., Archelas A., Furstoss R., Oesch F. Cloning and molecular characterization of a soluble epoxide hydrolase from Aspergillus niger that is related to mammalian microsomal epoxide hydrolase. Biochem. J. 1999a; 344: 273–280
  • Arand M., Müller F., Mecky A., Hinz W., Urban P., Pompon D., Kellner R., Oesch F. Catalytic triad of microsomal epoxide hydrolase: replacement of Glu404 with Asp leads to a strongly increased turnover rate. Biochem. J. 1999b; 337: 37–43
  • Arand M., Hallberg B. M., Zou J., Bergfors T., Oesch F., van der Werf M. J., De Bont J. A., Jones T. A., Mowbray S. L. Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site. EMBO J. 2003a; 22: 2583–2592
  • Arand M., Herrero Plana M. E., Hengstler J. G., Lohmann M., Cronin A., Oesch F. Detoxification strategy of epoxide hydrolase—the basis for a threshold in chemical carcinogenesis. EXCLI J. 2003b; 2: 22–30
  • Argiriadi M. A., Morisseau C., Hammock B. D., Christianson D. W. Detoxification of environmental mutagens and carcinogens: structure, mechanism, and evolution of liver epoxide hydrolase. Proc. Natl. Acad. Sci. USA 1999; 96: 10637–10642
  • Argiriadi M. A., Morisseau C., Goodrow M. H., Dowdy D. L., Hammock B. D., Christianson D. W. Binding of alkylurea inhibitors to epoxide hydrolase implicates active site tyrosines in substrate activation. J. Biol. Chem. 2000; 275: 15265–15270
  • Armstrong R. N., Cassidy C. S. New structural and chemical insight into the catalytic mechanism of epoxide hydrolases. Drug Metab. Rev. 2000; 32: 327–338
  • Barbirato F., Verdoes J. C., de Bont J. A., van der Werf M. J. The Rhodococcus erythropolis DCL14 limonene-1,2-epoxide hydrolase gene encodes an enzyme belonging to a novel class of epoxide hydrolases. FEBS Lett. 1998; 438: 293–296
  • Beetham J. K., Tian T., Hammock B. D. cDNA cloning and expression of a soluble epoxide hydrolase from human liver. Arch. Biochem. Biophys. 1993; 305: 197–201
  • Beetham J. K., Grant D., Arand M., Garbarino J., Kiyosue T., Pinot F., Oesch F., Belknap W. R., Shinozaki K., Hammock B. D. Gene evolution of epoxide hydrolases and recommended nomenclature. DNA Cell Biol. 1995; 14: 61–71
  • Cronin A., Mowbray S., Dürk H., Homburg S., Fleming I., Fisslthaler B., Oesch F., Arand M. The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc. Natl. Acad. Sci. USA 2003; 100: 1552–1557
  • Dimmeler S., Fleming I., Fisslthaler B., Hermann C., Busse R., Zeiher A. M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999; 399: 601–605
  • Fang X., Kaduce T. L., Weintraub N. L., Harmon S., Teesch L. M., Morisseau C., Thompson D. A., Hammock B. D., Spector A. A. Pathways of epoxyeicosatrienoic acid metabolism in endothelial cells. Implications for the vascular effects of soluble epoxide hydrolase inhibition. J. Biol. Chem. 2001; 276: 14867–14874
  • Franken S. M., Rozeboom H. J., Kalk K. H., Dijkstra B. W. Crystal structure of haloalkane dehalogenase: an enzyme to detoxify halogenated alkanes. EMBO J. 1991; 10: 1297–1302
  • Fretland A. J., Omiecinski C. J. Epoxide hydrolases: biochemistry and molecular biology. Chem. Biol. Interact. 2000; 129: 41–59
  • Funk C. D., Radmark O., Fu J. Y., Matsumoto T., Jornvall H., Shimizu T., Samuelsson B. Molecular cloning and amino acid sequence of leukotriene A4 hydrolase. Proc. Natl. Acad. Sci. USA 1987; 84: 6677–6681
  • Grant D. F., Storms D. H., Hammock B. D. Molecular cloning and expression of murine liver soluble epoxide hydrolase. J. Biol. Chem. 1993; 268: 17628–17633
  • Hammock B. D., Pinot F., Beetham J. K., Grant D. F., Arand M. E., Oesch F. Isolation of a putative hydroxyacyl enzyme intermediate of an epoxide hydrolase. Biochem. Biophys. Res. Commun. 1994; 198: 850–856
  • Hammock B., Storms D., Grant D. Epoxide hydrolases. Comprehensive Toxicology, F. Guengerich. Pergamon Press, Oxford 1997; pp. 283–305
  • Heinemann F. S., Ozols J. The covalent structure of microsomal epoxide hydrolase. II. The complete amino acid sequence. J. Biol. Chem. 1984; 259: 797–804
  • Janssen D. B., Fries F., van der Ploeg J., Kazemier B., Terpstra P., Witholt B. Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhlA gene. J. Bacteriol. 1989; 171: 6791–6799
  • Knehr M., Thomas H., Arand M., Gebel T., Zeller H. D., Oesch F. Isolation and characterization of a cDNA encoding rat liver cytosolic epoxide hydrolase and its functional expression in. Escherichia coli. J. Biol. Chem. 1993; 268: 17623–17627
  • Koonin E. V., Tatusov R. L. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity—application of an iterative approach to database search. J. Mol. Biol. 1994; 244: 125–132
  • Lacourciere G. M., Armstrong R. N. The catalytic mechanism of microsomal epoxide hydrolase involves an ester intermediate. J. Am. Chem. Soc. 1993; 115: 10466–10467
  • Lacourciere G. M., Armstrong R. N. Microsomal and soluble epoxide hydrolases are members of the same family of C–X bond hydrolase enzymes. Chem. Res. Toxicol. 1994; 7: 121–124
  • Laughlin L. T., Tzeng H. F., Lin S., Armstrong R. N. Mechanism of microsomal epoxide hydrolase. Semifunctional site-specific mutants affecting the alkylation half-reaction. Biochemistry 1998; 37: 2897–2904
  • Moghaddam M. F., Grant D. F., Cheek J. M., Greene J. F., Williamson K. C., Hammock B. D. Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nat. Med. 1997; 3: 562–566
  • Morisseau C., Archelas A., Guitton C., Faucher D., Furstoss R., Baratti J. C. Purification and characterization of a highly enantioselective epoxide hydrolase from. Aspergillus niger. Eur. J. Biochem. 1999; 263: 386–395
  • Müller F., Arand M., Frank H., Seidel A., Hinz W., Winkler L., Hänel K., Blee E., Beetham J. K., Hammock B. D., Oesch F. Visualization of a covalent intermediate between microsomal epoxide hydrolase, but not cholesterol epoxide hydrolase, and their substrates. Eur. J. Biochem. 1997; 245: 490–496
  • Nardini M., Ridder I. S., Rozeboom H. J., Kalk K. H., Rink R., Janssen D. B., Dijkstra B. W. The x-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1. An enzyme to detoxify harmful epoxides. J. Biol. Chem. 1999; 274: 14579–14586
  • Newman J. W., Morisseau C., Harris T. R., Hammock B. D. The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc. Natl. Acad. Sci. USA 2003; 100: 1558–1563
  • Oesch F. Mammalian epoxide hydrases: inducible enzymes catalysing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica 1973; 3: 305–340
  • Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J., Sussman J. L., Verschueren K. H. G., Goldman A. The α/β hydrolase fold. Protein Eng. 1992; 5: 197–211
  • Pinot F., Grant D. F., Beetham J. K., Parker A. G., Borhan B., Landt S., Jones A. D., Hammock B. D. Molecular and biochemical evidence for the involvement of the Asp-333-His-523 pair in the catalytic mechanism of soluble epoxide hydrolase. J. Biol. Chem. 1995; 270: 7968–7974
  • Pries F., Kingma J., Pentenga M., Vanpouderoyen G., Jeronimusstratingh C. M., Bruins A. P., Janssen D. B. Site-directed mutagenesis and oxygen isotope incorporation studies of the nucleophilic aspartate of haloalkane dehalogenase. Biochemistry 1994; 33: 1242–1247
  • Ridder I. S., Rozeboom H. J., Kalk K. H., Janssen D. B., Dijkstra B. W. Three-dimensional structure of l-2-haloacid dehalogenase from Xanthobacter autotrophicus GJ10 complexed with the substrate-analogue formate. J. Biol. Chem. 1997; 272: 33015–33022
  • Rink R., Janssen D. B. Kinetic mechanism of the enantioselective conversion of styrene oxide by epoxide hydrolase from Agrobacterium radiobacter AD1. Biochemistry 1998; 37: 18119–18127
  • Rink R., Fennema M., Smids M., Dehmel U., Janssen D. B. Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. J. Biol. Chem. 1997; 272: 14650–14657
  • Rink R., Kingma J., Lutje Spelberg J. H., Janssen D. B. Tyrosine residues serve as proton donor in the catalytic mechanism of epoxide hydrolase from. Agrobacterium radiobacter. Biochemistry 2000; 39: 5600–5613
  • Rudberg P. C., Tholander F., Thunnissen M. M., Samuelsson B., Haeggstrom J. Z. Leukotriene A4 hydrolase: selective abrogation of leukotriene B4 formation by mutation of aspartic acid 375. Proc. Natl. Acad. Sci. USA 2002; 99: 4215–4220
  • Sinal C. J., Miyata M., Tohkin M., Nagata K., Bend J. R., Gonzalez F. J. Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J. Biol. Chem. 2000; 275: 40504–40510
  • Thunnissen M. M., Nordlund P., Haeggstrom J. Z. Crystal structure of human leukotriene A(4) hydrolase, a bifunctional enzyme in inflammation. Nat. Struct. Biol. 2001; 8: 131–135
  • Tzeng H.-F., Laughlin L. T., Lin S., Armstrong R. N. The catalytic mechanism of microsomal epoxide hydrolase involves reversible formation and rate-limiting hydrolysis of the alkyl-enzyme intermediate. J. Am. Chem. Soc. 1996; 118: 9436–9437
  • Tzeng H.-F., Laughlin L. T., Armstrong R. N. Semifunctional site-specific mutants affecting the hydrolytic half-reaction of microsomal epoxide hydrolase. Biochemistry 1998; 37: 2905–2911
  • van der Werf M. J., Overkamp K. M., de Bont J. A. Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases. J. Bacteriol. 1998; 180: 5052–5057
  • van der Werf M. J., Swarts H. J., de Bont J. A. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl. Environ. Microbiol. 1999; 65: 2092–2102
  • Verschueren K. H. G., Seljée F., Rozeboom H. J., Kalk K. H., Dijkstra B. W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 1993; 363: 693–698
  • Yamada T., Morisseau C., Maxwell J. E., Argiriadi M. A., Christianson D. W., Hammock B. D. Biochemical evidence for the involvement of tyrosine in epoxide activation during the catalytic cycle of epoxide hydrolase. J. Biol. Chem. 2000; 275: 23082–23088
  • Yu Z., Xu F., Huse L. M., Morisseau C., Draper A. J., Newman J. W., Parker C., Graham L., Engler M. M., Hammock B. D., Zeldin D. C., Kroetz D. L. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ. Res. 2000; 87: 992–998
  • Zheng J., Plopper C. G., Lakritz J., Storms D. H., Hammock B. D. Leukotoxin-diol: a putative toxic mediator involved in acute respiratory distress syndrome. Am. J. Respir. Cell Mol. Biol. 2001; 25: 434–438
  • Zou J., Hallberg B. M., Bergfors T., Oesch F., Arand M., Mowbray S. L., Jones T. A. Structure of Aspergillus niger epoxide hydrolase at 1.8 A resolution: implications for the structure and function of the mammalian microsomal class of epoxide hydrolases. Structure Fold. Des. 2000; 8: 111–122

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.