16
Views
8
CrossRef citations to date
0
Altmetric
Original

RESPONSE OF MEMBRANE-ASSOCIATED CALCIUM SIGNALING SYSTEMS OF THE CELL TO EXTREMELY LOW-FREQUENCY EXTERNAL SIGNALS WITH DIFFERENT WAVEFORM PARAMETERS

, &
Pages 107-122 | Published online: 31 Mar 2001

REFERENCES

  • Adey W. R. Biological Effects of Electromagnetic Fields. J. Cell. Biochem. 1993; 51: 410–416
  • Goodman E. M., Greenebaum B., Marron M. T. Effects of Electromagnetic Fields on Molecules and Cells. Int. Rev. Cyt. 1995; 158: 279–338
  • Lacy-Hulbert A., Metcalfe J. C., Hesketh R. Biological Responses to Electromagnetic Fields. FASEB J. 1998; 12: 395–420
  • Repacholi M. H., Greenebaum B. Interaction of Static and Extremely Low Frequency Electric and Magnetic Fields with Living Systems: Health Effects and Research Needs. Bioelectromagnetics 1999; 20: 133–160
  • Gapeyev A. B., Chemeris N. K. Nonlinear Processes of Intracellular Calcium Signaling as a Target for the Influence of Extremely Low-Frequency Fields. Electro- and Magnetobiology 2000; 19: 21–42
  • Bawin S. M., Kaczmarek L. K., Adey W. R. Effects of Modulated VHF Fields on the Central Nervous System. Ann. N.Y. Acad. Sci. 1975; 247: 74–81
  • Liboff A. R. Cyclotron Resonance in Membrane Transport. Interactions between Electromagnetic Fields and Cells, A. Chiabrera, C. Nikolini, H. P. Schwan. Plenum, New York 1985; 281–296
  • Grundler W., Kaiser F., Keilmann F., Walleczek J. Mechanisms of Electromagnetic Interaction with Cellular Systems. Naturwissenschaften 1992; 79: 551–559
  • Lednev V. V. Bioeffects of Weak Combined, Static and Alternating Magnetic Fields. Biofizika 1996; 41: 224–232, In Russian
  • Zhadin M. N. Combined Action of Static and Alternating Magnetic Fields on Ion Motion in a Macromolecule: Theoretical Aspects. Bioelectromagnetics 1998; 19: 279–292
  • Binhi V. N. Amplitude and Frequency Dissociation Spectra of Ion-Protein Complexes Rotating in Magnetic Fields. Bioelectromagnetics 2000; 21: 34–45
  • Chiabrera A., Bianco B., Moggia E., Kaufman J. J. Zeeman-Stark Modeling of the RF EMF Interaction with Ligand Binding. Bioelectromagnetics 2000; 21: 312–324
  • Pilla A. A., Muehsam D. J., Markov M. S., Sisken B. F. EMF Signals and Ion/Ligand Kinetics: Prediction of Bioeffective Waveform Parameters. Bioelectrochem. Bioenerg. 1999; 48: 27–34
  • Pienkowski D., Pollack S. R., Brighton C. T., Griffith N. J. Comparison of Asymmetrical and Symmetrical Pulse Waveforms in Electromagnetic Stimulation. J. Orthop. Res. 1992; 10: 247–255
  • Kuznetsov A. N. Biophysics of Low-Frequency Electromagnetic Influences. Moscow 1994, In Russian
  • Gapeyev A. B., Chemeris N. K. Model Analysis of Nonlinear Modification of Neutrophil Calcium Homeostasis under the Influence of Modulated Electromagnetic Radiation of Extremely High Frequencies. J. Biol. Phys. 1999; 25: 193–209
  • Gapeyev A. B., Chemeris N. K. Model Approach to the Analysis of Modulated Electromagnetic Radiation Influence on Animal Cells. Biofizika 2000; 45: 299–312, In Russian
  • Kindzelskii A. L., Petty H. R. Extremely Low Frequency Pulsed DC Electric Fields Promote Neutrophil Extension. Metabolic Resonance and DNA Damage When Phase-Matched with Metabolic Oscillators. Biochim. Biophys. Acta 2000; 1495: 90–111
  • Pilla A. A. Electrochemical Information Transfer at Living Cell Membranes. Ann. N.Y. Acad. Sci. 1974; 238: 149–170
  • Pilla A. A. Electrochemical Information Transfer at Cell Surfaces and Junctions. Application to the Study and Manipulation of Cell Regulation. Bioelectrochemistry, H. Kegzer, F. Gutman. Plenum Press, New York 1980; 353
  • Pilla A. A. At Electrochemical Consideration of Electromagnetic Bioeffects. Modern Bioelectricity, A. A. Marino. Plenum Press, New York 1988; 427
  • Walleczek J. Electromagnetic Field Effects on Cells of the Immune System: The Role of Calcium Signaling. FASEB J. 1992; 6: 3177–3185
  • Karabakhtsian R., Broude N., Shalts N., Kochlatyi S., Goodman R., Henderson A. S. Calcium Is Necessary in the Cell Response to EM Fields. FEBS Lett. 1994; 349: 1–6
  • Yost M. G., Liburdy R. P. Time-Varying and Static Magnetic Fields Act in Combination to Alter Calcium Signal Transduction in the Lymphocyte. FEBS Lett. 1992; 296: 117–122
  • Barbier E., Dufy B., Veyret B. Stimulation of Ca2+ Influx in Rat Pituitary Cells under Exposure to a 50 Hz Magnetic Field. Bioelectromagnetics 1996; 17: 303–311
  • Kataev A. A., Alexandrov A. A., Tikhonova L. I., Berestovsky G. N. Frequency-Dependent Electromagnetic Millimeter-Wave Effects on Ionic Currents in the Cell Membrane of Nitellopsis: Nonthermal Action. Biophysics 1993; 38: 445–460
  • Geletyuk V. I., Kazachenko V. N., Chemeris N. K., Fesenko E. E. Dual Effect of Microwaves on Single Ca2+-Activated K+ Channels in Cultured Kidney Cells Vero. FEBS Lett. 1995; 359: 85–88
  • Kullnick U. Do Weak, Low Pulsed Frequency, High-Frequency Electromagnetic or Magnetic-Fields Alter the Basic Bioelectrical Parameters of Nerve-Cells in Vineyard Snails (Helix-pomatia L) 1. Electromagnetic-fields. Bioelectrochem. Bioenerg. 1995; 37: 39–45
  • Carson J. J., Prato F. S., Drost D. J., Diesbourg L. D., Dixon S. J. Time-Varying Magnetic Fields Increase Cytosolic Free Ca2+ in HL-60 Cells. Am. J. Physiol. 1990; 259: C687–692
  • Liburdy R. P., Callahan D. E., Harland J., Dunham E., Sloma T. R., Yaswen P. Experimental Evidence for 60 Hz Magnetic Fields Operating through the Signal Transduction Cascade. Effects on Calcium Influx and c-MYC mRNA Induction. FEBS Lett. 1993; 334: 301–308
  • Lindstrom E., Lindstrom P., Berglund A., Lundgren E., Mild K. H. Intracellular Calcium Oscillations in a T-Cell Line after Exposure to Extremely-Low-Frequency Magnetic Fields with Variable Frequencies and Flux Densities. Bioelectromagnetics 1995; 16: 41–47
  • Safronova V. G., Gapeyev A. B., Alovskaya A. A., Gabdulkhakova A. G., Chemeris N. K., Fesenko Ye. Ye. Millimetre Waves Inhibit the Synergy Effect of the Calcium Ionophore A23187 and a Phorbol Ester in the Activation of the Respiratory Burst of the Neutrophils. Biophysics 1997; 42: 1297–1303
  • Alovskaya A. A., Gabdulkhakova A. G., Gapeyev A. B., Dedkova Ye. N., Safronova V. G., Fesenko E. E., Chemeris N. K. Biological Effect of the EHF EMR Depends on the Functional Status of Neutrophils. Herald Modern Med. Techn. 1998; 5: 11–15, In Russian
  • Gapeyev A. B., Yakushina V. S., Chemeris N. K., Fesenko E. E. Modification of Production of Reactive Oxygen Species in Mouse Peritoneal Neutrophils on Exposure to Low-Intensity Modulated Millimeter Wave Radiation. Bioelectrochem. Bioenerg. 1998; 46: 267–272
  • von Tscharner V., Prod'hom B., Baggiolini M., Reuter H. Ion Channels in Human Neutrophils Activated by a Rise in Free Cytosolic Calcium Concentration. Nature 1986; 324: 369–372
  • Kaimachnikov N. P., Lisnichuk L. Ya. A Model for Ca2+ Oscillations in Lymphocytes Based on the Regulation of Ca2+ Influx into the Cell. Biol. Membr. 1995; 12: 105–112, In Russian
  • Goldbeter A., Dupont G., Berridge M. J. Minimal Model for Signal-induced Ca2+ Oscillations and for Their Frequency Encoding through Protein Phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 1461–1465
  • Campbell A. K., Hallet M. B. Measurement of Intracellular Calcium Ions and Oxygen Radicals in Polymorphonuclear Leukocyte-Erythrocyte “Ghost” Hybrids. J. Physiol. 1983; 338: 537–550
  • Eichwald C., Kaiser F. Model for External Influences on Cellular Signal Transduction Pathways Including Cytosolic Calcium Oscillations. Bioelectromagnetics 1995; 16: 75–85
  • Sokolov P. A., Gapeyev A. B. Dependence of the Effects of Modulated Electromagnetic Fields on the Modulating Signal Waveform Parameters. In Abstract Book of School-Conference “Horizons of Physicochemical Biology,” Pushchino, May 28–June 2 2000; 59–60, In Russian
  • Podkolzin A. A., Dontsov V. I., Barysheva A. V., Kobeleva G. Yu. Mechanisms of Action of Low-Intensity Factors: Narrow-Resonant Stimulation of Antibody Formation in Mice by Weak Pulse Currents. Immunologia 1994; 2: 59–60, In Russian

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.