57
Views
4
CrossRef citations to date
0
Altmetric
Original

IN VIVO EFFECTS OF LOW FREQUENCY LOW ENERGY PULSING ELECTROMAGNETIC FIELDS ON GENE EXPRESSION DURING THE INFLAMMATION PHASE OF BONE REPAIR

, , , , , , , , & show all
Pages 197-208 | Published online: 12 Sep 2002

REFERENCES

  • Bassett C.A. L., Becker R. O. Generation of electric potentials by bone in response to mechanical stress. Science 1962; 137: 1063–1064
  • Friedenberg Z. B., Harlow M. C., Heppenstall R. B., Brighton C. T. The cellular origins of bioelectric potentials in bone. Calcif. Tissue Int. 1973; 13: 53–62
  • Binderman I., Shimshoni Z., Somjen D. Biochemical pathways involved in the translation of physical stimulus into biological message. Calcif. Tissue Int. 1984; 36(suppl. 1)S82–S85
  • Brighton C. T., Strafford B., Gross S. B., Leatherwood D. F., Williams J. L., Pollack S. R. The proliferative and synthetic response of isolated calvarian bone cells of rats to cyclical biaxial mechanical strain. J. Bone Jt. Surg., Am. 1991; 73: 320–331
  • Brighton C. T., Fisher J.R. S., Jr., Levine S. E., Corsetti J. R., Reilly T., Landsman A. S., William J. L., Thibault L. E. The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus. J. Bone Jt. Surg., Am. 1996; 78(9)1337–1347
  • Buckley M. J., Banes A. J., Levin L. G., Sumpio B. E., Sato M., Jordan R., Gilbert J., Link G. W., Tran Son Tay R. Osteoblasts increase their rate of division and align in response to cyclic mechanical tension in vitro. Bone Miner. 1988; 4: 225–236
  • Hasegawa S., Sato S., Saito S., Suzuki Y., Brunette D. M. Mechanical stretching increases the number of cultured bone cells synthesizing DNA and alters their pattern of protein synthesis. Calcif. Tissue Int. 1985; 37: 431–436
  • Jones D. B., Bingmann D. How do osteoblasts respond to mechanical stimulation?. Cells Mater. 1991; 1: 329–340
  • Jones D. B., Nolte H., Scolubbers J. G., Turner E., Veltel D. Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials 1991; 12: 101–110
  • Einhorn T. A., Majeska R. T., Rush E. B., Levine P. M., Horowitz M. C. The expression of cytokine activity by fracture callus. J. Bone Miner. Res. 1995; 10(8)1272–1281
  • Probst A., Spiegel H. U. Cellular mechanisms of bone repair. J. Invest. Surg. 1997; 10: 77–86
  • Shih M. S., Norridin R. W. Effect of prostaglandin E2 on rib fracture healing in beagles: Histomorphometric study on periosteum adjacent to the fracture site. Am. J. Vet. Res. 1986; 47: 1561–1564
  • Bassett C.A. L., Pawluk R. J., Pilla A. A. Augmentation of bone repair by inductively coupled electromagnetic fields. Science 1974; 184: 575–577
  • Brighton C. T., Hozchack W. J., Brager M. D., Windsor R. E., Pollack S. R., Wreslovic E. J., Kotwick J. E. Fracture healing in rabbit fibula when subjected to various capacitively coupled electrical fields. J. Orthop. Res. 1985; 3: 331–340
  • Canè V., Botti P., Farneti D., Soana S. Electromagnetic stimulation of bone repair: A histomorphometric study. J. Orthop. Res. 1991; 9: 908–917
  • Canè V., Botti P., Soana S. Pulsed magnetic fields improve osteoblast activity during the repair of an experimental osseous defect. J. Orthop. Res. 1993; 11: 664–670
  • Canè V., Zaffe D., Cavani F., Botti P., Soana S. Pulsed electromagnetic fields modulate enzymatic activity during the early stages of bone repair. Electro-Magnetobiol. 1997; 16(2)143–152
  • Rackallio J., Makinen P. L. Alkaline and acid phosphatase activity in the initial phase of fracture healing. Acta Pathol. Microbiol. Scand. 1969; 75: 415–422
  • Ferrari S., Donelli A., Manfredini R., Sarti M., Roncaglia R., Tagliafico E., Rossi E., Torelli G., Torelli U. Differential effects of c-myb and c-fes antisense oligo deoxynucleotides on granulocytic differentiation of human myeloid leukemia HL-60 cells. Cell Growth Differ. 1990; 1: 543–548
  • Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987; 162(1)156–159
  • Erlich H. A., Gelfand D., Sninsky J. J. Recent advances in the polymerase chain reaction. Science 1991; 252(5013)1643–1651
  • Ferrari S., Tagliafico E., D'Inca M., Ceccherelli G., Manfredini R., Selleri L., Donelli A., Sacchi S., Torelli G., Torelli U. Abundance of the primary transcript and its processed product of growth-related genes in normal and leukemic cells during proliferation and differentiation. Cancer Res. 1992; 52(1)11–16
  • Cadossi R., Hentz V. R., Kipp J., Eiverson R., Ceccherelli G., Zucchini P., Emilia G., Torelli G., Franceschi C., Cossarizza A. Effect of low frequency low energy pulsing electromagnetic field (PEMF) on x-ray-irradiated mice. Exp. Hematol. 1989; 17: 88–95
  • Albretsen C., Haukanes B. I., Aasland R., Klappe K. Optimal conditions for hybridation with oligodeoxynucleotides: A study with myc oncogene DNA probes. Anal. Biochem. 1988; 170: 193–202
  • Manolagas S. C., Jilka R. L., Bellido T., O'Brien C. A., Parfitt M. A. Interleukin-6-Type Cytokines and Their Receptors. Principles of Bone Biology. Academic Press. 1996; 701–713
  • Kovacs E. J. Fibrogenic cytokines: The role of immune mediators in the development of scar tissue. Immunol. Today 1991; 12(1)17–23
  • Lader C. S., Flanagan A. M. Prostaglandin E2, interleukin 1alpha, and tumor necrosis factor-alpha increase human osteoclast formation and bone resorption in vitro. Endocrinology 1998; 139(7)3157–3164
  • Sati H. I., Greaves M., Apperley L. F., Russel L. G., Croucher P. I. Expression of interleukin-1 beta and tumor necrosis factor-alpha in plasma cells from patients with multiple mieloma. Br. J. Haematol. 1999; 104(2)350–357
  • Isaacs S. D., Fan X., Fan D., Gewant H., Murphy T. C., Farmer P., Taylor W. R., Nanes M. S., Rubin J. Role of NFkappaB in the regulation of macrophage colony stimulating factor by tumor necrosis factor-alpha in ST2 bone stromal cells. J. Cell. Physiol. 1999; 179(2)193–200
  • O'Kane S., Ferguson M. W. Transforming growth factor beta s and wound healing. Int. J. Biochem. Cell Biol. 1997; 29(1)63–78
  • Suggs S. V., Wallace R. B., Hirose T., Kawashima E. H., Itakura K. Use of synthetic oligonucleotides as hybridization probes: Isolation of cloned cDNA sequences for human β2-microglobulin. Proc. Natl. Acad. Sci. U. S. A. 1981; 78(11)6613–6617
  • Haegeman G., Content J., Volckaert G., Derynck R., Tavernier J., Fiers W. Structural analysis of the sequence coding for an inducible 26-kDa protein in human fibroblast. Eur. J. Biochem. 1986; 159: 625–632
  • Hirano T., Yasukawa K., Harada H., Taga T., Watanabe Y., Matsuda T., Kashiwamura S., Nakajima K., Koyama K., Iwamatsu A., Tsunasawa S., Sakiyama F., Matsui H., Takahara Y., Taniguchi T., Kishimoto T. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 1986; 324(6092)73–76
  • Su X., Morris D. D., McGraw R. A. Cloning and characterization of gene TNF alpha encoding equine tumor necrosis factor alpha. 1991, Unpublished
  • Derynck R., Rhee L., Chen E. Y., Tilburg A. Intron-exon structure of the human transforming growth factor-B precursor gene. Nucleic Acids Res. 1987; 15: 3188–3189

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.