45
Views
25
CrossRef citations to date
0
Altmetric
Original

THE EFFECT OF LOW LEVEL CONTINUOUS 2.45 GHz WAVES ON ENZYMES OF DEVELOPING RAT BRAIN

&
Pages 221-231 | Published online: 12 Sep 2002

REFERENCES

  • World Health Organization (WHO). Electromagnetic Fields (300 Hz to 300 GHz). Environmental Health Criteria. 1993; 137
  • Lai H., Singh N. P. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int. J. Radiat. Biol. 1996; 69: 513–521
  • Kunjilwar K. K., Behari J. Effect of amplitude-modulated radio frequency radiation on cholinergic system of developing rats. Brain Res. 1993; 601: 321–324
  • Repacholi M. H. Low level exposure to radiofrequency electromagnetic fields: Health effects and research needs. Bioelectromagnetics 1998; 19: 1–19
  • Davis R. H., Morris D. R., Coffino P. Sequestered end products and enzyme regulation: The case of ornithine decarboxylase. Microbiol. Rev. 1992; 56: 280–290
  • Smith M. K., Goral M. A., Wright J. H., Matrisian L. M., Morris R. J., Klein-Szanto A.J. P., Gilmour S. K. Ornithine decarboxylase overexpression leads to increased epithelial tumor invastiveness. Cancer Res. 1997; 57: 2104–2108
  • Hillebrand G. G., Winslow M. S., Benzinger M. J., Heitmeyer D. A., Bissett D. L. Acute and chronic ultraviolet radiation induction of epidermal ornithine decarboxylase activity in hairless mice. Cancer Res. 1990; 50: 1580–1581
  • O'brien T. G., Megosh L. C., Gilliard G., Peralta S. A. Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res. 1987; 57: 2630–2637
  • Mevissen M., Haubler M., Loscher W. Alterations in ornithine decarboxylase activity in the rat mammary gland after different periods of 50 Hz magnetic field exposure. Bioelectromagnetics 1999; 20: 338–346
  • Kikkawa U., Minakuchi R., Takai Y., Nishizuka Y. Calcium-activated, phospholipid-dependent protein kinase (protein kinase C) from rat brain. Methods Enzymol. 1983; 99: 288–298
  • Nishizuka Y. Protein kinase C in cell surface signal transduction and tumor promotion. Nature 1984; 308: 693–698
  • Clapham D. E. Calcium signaling. Cell 1995; 80: 259–268
  • Wolke S., Neibig U., Elsner R., Gollnick F., Meyer R. Calcium homeostasis of isolated heart muscle cells exposed to pulsed high-frequency electromagnetic fields. Bioelectromagnetics 1996; 17: 144–153
  • Azanza M., Moral A. D. Cell membrane biochemistry and neurobiological approach to biomagnetism. Prog. Neurobiol. 1994; 44: 517–601
  • Ray S., Behari J. Physiological changes in rats after exposure to low levels of microwaves. Radiat. Res. 1990; 125: 199–202
  • Durney C. H., Massoudi H., Iskander M. F. Radiofrequency Radiation Dosimetry Handbook, 4th Ed. Salt Lake City, Utah 1985; 6.16
  • Wu V. S., Donato N. J., Byus C. V. Growth state-dependent alterations in the ability of 12-O-tetradeconoylphorbol-13-acetate to increase ornithine decarboxylase activity in Reuber H35 Hepatoma cells. Cancer Res. 1981; 41: 3384–3391
  • Lowry O. H., Rosenbergh N. J., Farr A. L., Randall R. J. Protein measurement with Folin-phenol reagent. J. Biol. Chem. 1951; 193: 265–275
  • Havarankova J., Roth J. Insulin receptors are widely distributed in the central nervous system of the rat. Nature 1978; 272: 827–829
  • Hetherington A., Trewavas A. Calcium-dependent protein kinase in pea shoot membranes. FEBS Lett. 1982; 145: 67–71
  • Blackman C. F., Benane S. G., Kinney L. S., Joines W. T., House D. E. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiat. Res. 1982; 92: 510–520
  • Khillare B., Behari J. Effect of amplitude modulated radiofrequency radiation on reproduction pattern in rats. Electro- Magnetobiol. 1998; 17: 43–55
  • Byus C. V., Kartun K., Pieper S. E., Adey W. R. Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters. Cancer Res. 1988; 48: 4222–4226
  • Balcer-Kubiczek E. K., Harrison G. H. Neoplastic transformation of C3H/10 T 1/2 cells following exposure to 120 Hz modulated 2.45 GHz microwaves and phorbol ester tumor promoter. Radiat. Res. 1991; 126: 65–72
  • Mevissen M., Kietzmann M., Loscher W. In vivo exposure of rats to a weak alternating magnetic field increase ornithine decarboxylase activity in the mammary gland by similar extent as the carcinogen DMBA. Cancer Lett. 1995; 90: 207–214
  • Byus C. V., Lundak R. L., Fletcher R. M., Adey W. R. Alterations in protein kinase activity following exposure of cultured human lymphocytes to modulated microwave fields. Bioelectromagnetics 1984; 5: 341–351
  • Paulraj R., Behari J., Rao A. R. Effect of 112 MHz amplitude modulated radiation on calcium ion efflux and ODC activity in chronically exposed rat brain. Indian J. Biochem. Biophys. 1999; 36: 337–340
  • Penafiel L. M., Lotivitz T., Krause D., Desta A., Mullins J. M. Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells. Bioelectromagnetics 1997; 18: 132–141
  • Adey W. R. Electromagnetic Fields and the Essence of Living Systems. Modern Radio Science, J. B. Anderson. Oxford University Press, Oxford 1990; 1–36
  • Kunjilwar K. K. Effect of Moderate Intensity Amplitude Modulated RF Fields on Developing Rat Brain, A PhD Thesis Submitted to Jawaharlal Nehru University New Delhi, India. 1993

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.