48
Views
7
CrossRef citations to date
0
Altmetric
Original

Induction of Apoptosis and Necrosis in Cancer Cells by Electric Fields, Electromagnetic Fields, and Photodynamically Active Quinoids

, &
Pages 185-200 | Published online: 07 Jul 2009

REFERENCES

  • Zimmermann, V.; Neil, G. Electromanipulation of cells. CRC Press, Boca Raton, 1996.
  • Velizarov, S.; Berg, H. Electropermeabilization and electrofusion of human lymphoma cells modified by proteolytic enzymes. Bioelectrochem. Bioenerg., 1998, 46, 263–265.
  • Lehmann, M.; Berg, H. Interleucin-10 expression is induced in the monocytic cell line U-973. Pflügers Archiv Europ. J. Physiol., 1998, 435, 868–870.
  • Liu, M.; Gothe, G.; Berg, H. Electroporation and fusion of cancer cells modified by amino acids and polypeptides. Electro-Magnetobiology., 2000, 19, 331–338.
  • Berg, H. Possibilities and problems of low frequency weak electromagnetic fields in cell biology. Bioelectrochem. Bioenergetics, 1995, 38, 153–159.
  • Stavroulakis, P. (ed.) Biological Effects of Electromagnetic Fields, Springer Verlag, Berlin, 2003.
  • Binhi, V. Magnetobiology-underlying physical problems, Academic Press, San Diego.
  • Berg, H. LF-Electromagnetic field effects on cell metabolism. In Bioelectrochemistry of Cell and Tissues Vol. 2 of Bioelectrochemistry Principles and Practicel; Walz, D.; Berg, H.; Milazzo, G.; Eds.; Birkhäuser, Basel, 1995b, 356–388.
  • Simko, M.; Kriehuber, R.; Weiss, D.; Luben, R. Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics, 1998, 19, 85–91.
  • Kula, B.; Sobczak, A.; Kuska, R. A study of the effects of static and extremely low frequency magnetic fields on lipid preoxidation products in subcellular fibroblast fraction. Electromagn. Biol. Medic., 2002, 21, 161–168.
  • Mir, L.; Orlowski, S. Mechanisms of electrochemotherapy Adv., Drug Deliv. Revs, 1999, 35, 107–118.
  • Dev, S.; Rabussy, D.; Widra, G.; Hofmann, G. Medical applications of electroporation IEEE Trans. Plasma Sci., 2000, 28, 206–223.
  • Berg, H.; Lambreva, M. Synergism of photodynamic and electropermeation effects on cell vitality as a novel cytotoxic agent. US Patent, 2000, A61 N, PCT/US 99/14 202.
  • Williams, C.; Markov, M. Therapeutic electromagnetic field effects on angiogenesis during tumor growth: a pilot study in mice. Electro-Magnetobiology, 2001, 20; 323–329.
  • Tofani, S.; Cintorino, M.; Barone, D.; Berardelli, M.; De Santi, M.; Ferrara, F.; Tripodi, S.; Tosi, P. Increased mouse survival, tumor growth inhibition, and decreased immunoreactive p-53 after exposure to electromagnetic fields. Bioelectromagnetics, 2002, 23, 230–238.
  • Roncheto, F.; Barone, D.; Cintorino, M.; Berardelli, M.; Ferrara, A.; Lissolo, S.; Orlassino, R.; Ossola, P.; Rolfo, K.; Tofani, S.. Static and extremely low frequency (ELF) magnetic fields to treat cancer: a pilot study on patient with advanced neoplasm to assess safety and acule toxity. Abstract 11-1 at 25. BEMS Meeting, 2003, Maui.
  • Takeuchi, T. Institute of Microbiological Chemistry 1962–1987, Business Center for Academic Soc. Japan, Tokyo, 1987.
  • Archard, M.; Gill, M.; Strauch, R.J. Anthraquinones from the genus Cortinarius, Phytochem. 1985, 24, 2755–2758.
  • Räisänen, R.; Björk, H.; Hynninen, P.H. Two-dimensional TLC separation and mass spectrometric identification of anthraquinones from the fungus Dermocybe sanguinea., Z. Naturforsch. C., 2000, 55, 195–202.
  • Berg, A.; Görls, H.; Dörfelt, H.; Walter, G.; Schlegel, B.; Gräfe, U. Aureoquinone, a new protease inhibitor from Aureobasidium sp., J. Antibiot., 2000, 53, 1293–1295.
  • Schlegel, B.; Hanel, F.; Dahse, H.M.; Gräfe, U. New substituted benzoquinones inhibiting Tax/Creb interactions (in preparation).
  • Berg, A.; Reiber, K.; Dörfelt, H.; Schlegel, B.; Gräfe, U. Laccaridiones A and B, new protease inhibitors from Laccaria amethystea, J. Antibiot., 2000b, 53, 1313–1316.
  • Ibrahim, M.; Ahmed, Z.; Temerk, Y.; Berg, H. Voltammetry of adsorbed cancerostatic actinomycins, Bioelectrochem. Bioenerg., 1955, 36, 149–156.
  • Berg, H.; Kramarcyk, K. Polarographie chinoider Verbindungen, Talanta, 1965, 12, 1127–1148.
  • Berg, H.; Bauer, E.; Tresselt, D. Polarographische Reaktionskinetik bei Chinongleichgewichten. In: I. Longmuir (Ed.), Advances in Polarographia, Pergamon Press, 1960, 382–407.
  • Reszka, K.; Bilski, P.; Chignell, C.; Hartley, J.; Khan, N.; Souhami, R.; Mendonca, A. S.; Lown, W. (1992). Photosensitation by anti-cancer agents, J. Photochem. Photobiol. B: 15, 317–335.
  • Katenkamp, U.; Stutter, E.; Gollmick, F. A.; Petri, I.; Berg, H. Interaction of anthracycline antibiotics with biopolymers, VIII. Binding parameters of aclacinomycin A to DNA, J. Antibiot. (Japan), 1983, 36, 1222–1227.
  • Oleimick, N.; Morris, R.; Belichenko, I. The role of apoptosis in response to photodynamic therapy: what, where, why and how, Photochem. Photobiol. Sci., 2002, 1, 1–21.
  • Mühlig, P.; Förster, H.; Jacob, H.; Berg, H.; Röglin, G.; Wohlrabe, K. Cell membrane permeation of the anthracyclines violamycin BI and BII induced by an electric field pulse. Studia biophysica (Berlin), 1984, 104, 207–213.
  • Lambreva, M.; Zhou, A.; Hönes, I.; Berg, H. Increased incorporation of photosensitive dyes into yeast cells by electroporation. Electro-Magnetobiol., 1999, 18, 296–275.
  • Zhou, A.; Liu, M.; Baciu, C.; Glück, B.; Berg, H. Membrane electroporation increases photodynamic effects J. Electroanalyt. Chem., 2000, 486, 220–224.
  • Lambreva, M.; Glück, B.; Radeva, M.; Berg, H. Electroporation of active membranes supporting penetration of photodynamic active macromolecular chromophore dextrans. Bioelectrochemistry, 2004, 62, 95–98.
  • Zhang, L.; Widera, G.; Rabussay, D. Enhancement of the effectiveness of electroporation-augmented cutaneous DNA vaccination by a particular adjuvant. Bioelectrochemistry, 2004, 63, 369–373.
  • Sonntag, W.; Dertinger, H. Response of cytosolic calcium, cyclic AMP, and cyclic GMP in dimethylsufoxid-differentiated HL-60 cells to modulated low frequency electric currents. Bioelectromagnetics, 1998, 19, 452–458.
  • Gollmick, F. A.; Berg, H. Überden Mechanismus der photosensibilisierten Oxydation des Guanins durch Thiopyronin. Photochem. Photobiol., 1972, 16, 447–453.
  • Pang, L.; Baciu, C.; Traitcheva, N.; Berg, H. Photodynamic effect on cancer cells influenced by electromagnetic fields. J. Photochem. Photobiol. B., 2001, 64, 21–26.
  • Radeva, M.; Berg, H. Differences in lethality between cancer cells and human lymphocytes caused by LF-Electromagnetic fields. Bioelectromagnetics, 2004, 25, 503–507.
  • Traitcheva, N.; Angelova, P.; Radeva, M.; Berg, H. ELF Fields and photooxidation yielding lethal effects on cancer cells. Bioelectromagnetics, 2003, 24, 148–150.
  • Glück, B.; Güntzschel, V.; Berg, H. Inhibition of Proliferation of Human Lymphoma Cells U 937 by a 50 Hz Electromagnetic Field. Cell. mol. Biol., 2001, 47, 115–117.
  • Pang, L.; Traitcheva, N.; Gothe, G.; Gomez, J.; Berg, H. ELF-Electromagnetic fields inhibit the proliferation of human cancer cells and induce apoptosis. Electromagn. Biol. Medic., 2002, 21, 243–248.
  • Rosch, P.; Markov, M. (ed.). Bioelectromagnetic Medicine. M. Dekker, N. Y. 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.