231
Views
0
CrossRef citations to date
0
Altmetric
Original

UNINEPHRECTOMY INCREASES KIDNEY β2-MICROGLOBULIN: CAN IT PLAY A ROLE IN THE PROGRESSION OF KIDNEY DAMAGE?

, , , , , & show all
Pages 507-516 | Published online: 07 Jul 2009

REFERENCES

  • Goveric P D, Casey T T, Stone W J, et al. Beta-2 Microglobulin is an amyloidogenic protein in man. J Clin Invest 1985; 76: 2425–2429
  • Gejyo F, Odani S, Yamada T, et al. β2-microglobulin: a new form of amyloid protein associated with chronic hemodialysis. Kidney International 1986; 30: 385–390
  • Flöge J, Granolleras C, Shaldon S, Koch K M. Dialysis-associated amyloidosis and Beta-2-microglobulin. Contrib Nephrol 1988; 61: 27–36
  • Campistol J M, Bernard D, Papastoitsis G, et al. Polymerization of normal and intact β2-microglobulin as the amyloidogenic protein in dialysis-amyloidosis. Kidney International 1996; 50: 1262–1267
  • Schwalbe S, Holzhauer M, Schaeffer J, et al. β2-microglobulin associated amyloidosis: a vanishing complication of long-term hemodialysis?. Kidney International 1997; 52: 1077–1083
  • Bernier G M, Conrad M E. Catabolism of human β2-microglobulin by the rat kidney. Am J Physiol 1969; 217: 1359–1362
  • Bianchi C, Donadio C, Tramonti G, et al. High and preferential accumulation in the kidney of anionic and cationic small proteins. Kidney, Proteins and Drugs. Contrib Nephrol, C Bianchi, V Bocci, F A Carone, R Rabkin. Karger, Basel 1990; 83: 39–46
  • Hall P W, Chung-Park M, Vacca C V, et al. The renal handling of beta2-microglobulin in the dog. Kidney International 1982; 22: 156–161
  • Karlsson F A, Groth T, Sege K, et al. Turnover in humans of β2-microglobulin: the constant chain of HLA-antigens. Eur J Clin Invest 1980; 10: 293–300
  • Johnson V, Maak T. Renal tubular handling of proteins and peptides. Textbook of Nephrology, S G Massry, R J Glassock. 2nd edition, Williams and Wilkins, Baltimore 1989; 97–102
  • Wibell L, Evrin P E, Berggård I. Serum β2-microglobulin in renal disease. Nephron 1973; 10: 320–331
  • Trollfors B, Norrby R. Estimation of glomerular filtration rate by serum creatinine and serum β2-microglobulin. Nephron 1981; 28: 196–199
  • Acchiardo S, Kraus A P, Jennings B R. β2-microglobulin levels in patients with renal insuffciency. Amer J Kid Dis 1989; 13: 70–74
  • Greenwood F C, Hunter W M, Glover J S. The preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochem J 1963; 89: 114–123
  • Bianchi C, Donadio C, Tramonti G, et al. Renal handling of cationic and anionic small proteins: experiments in intact rats. Kidney and Proteins in health and disease. Contrib Nephrol, C Bianchi, V Bocci, F A Carone, R Rabkin. Karger, Basel 1988; 68: 37–44
  • Hysing J, Tolleshaug H, Curthoys N P. Reabsorption and intracellular transport of cytochrome C and lysozyme in rat kidney. Acta Physiol Scand 1990; 140: 419–427
  • Maack T, Hyung Park C, Camargo M JF. Renal filtration, transport and metabolism of proteins. The kidney: physiology and pathophysiology, D W Seldin, G Giebisch. ed 2, Raven Press, New York 1992; 3005–3038
  • Johansson B G, Ravnskov U. The serum level and urinary excretion of α2M, β2M and lysozyme in renal disease. Scand J Urol Nephrol 1972; 6: 249–256
  • Ramirez G, O'Neill W M, Bloomer H A, Jubiz W. Abnormalities in the regulation of prolactin in patients with chronic renal failure. J Clin Endocrinol Metab 1977; 45: 658–661
  • Hart P M, Feinfeld D A, Briscoe A M, et al. The effect of renal failure and hemodialysis on serum and urine myoglobin. Clinical Nephrology 1982; 18: 141–143
  • Sturfelt G, Truedsson L, Thysell H, Björck L. Serum level of complement factor D in systemic lupus erythematosus–an indicator of glomerular filtration rate. Acta Med Scand 1984; 216: 171–177
  • Simonsen O, Grubb A, Thysell H. The blood serum concentration of cystatin C (γ-trace) as a measure of the glomerular filtration rate. Scand J Clin Lab Invest 1985; 45: 97–101
  • Weber M H, Scholz P, Stibbe W, Scheler F. Alpha-1-mikroglobulin in urin und serum bei proteinurie und niereninsuffzienz. Klin Wochenschr 1985; 63: 711–717
  • Kusano E, Suzuki M, Asano Y, et al. Human α1-microglobulin and its relationship to renal function. Nephron 1985; 41: 320–324
  • Hsiao R J, Mezger M S, O'Connor D T. Chromogranin A in uremia: progressive retention of immunoreactive fragments. Kidney International 1990; 37: 955–964
  • Tramonti G, Donadio C, Ferdeghini M, et al. Serum tumor associated trypsin inhibitor (TATI) and renal function. Scand J Clin Lab Invest 1996; 56: 653–656
  • Tramonti G, Ferdeghini M, Donadio C, et al. Serum levels of tumor associated trypsin inhibitor (TATI) and glomerular filtration rate. Renal Failure 1998; 20: 295–302
  • Plebani M, Dall'Amico R, Mussap M, et al. Is serum cystatin C a sensitive marker of glomerular filtration rate (GFR)? A preliminary study on renal transplant patients. Renal Failure 1998; 20: 303–309
  • Bianchi C, Donadio C, Tramonti G, et al. 99mTc-aprotinin: a new tracer for kidney morphology and function. Eur J Nucl Med 1984; 9: 257–260
  • Bianchi C, Donadio C, Tramonti G, et al. 99mTc-aprotinin for the study of renal morphology and tubular function. Uremia Invest 1985–1986; 9: 139–146
  • Bianchi C, Donadio C, Tramonti G, et al. L'accumulation rénale de alpha-1-microglobuline radioiodée augmente chez le rat mononéphrectomisé. Néphrologie 1992; 13: 221–225
  • Bianchi C, Donadio C, Tramonti G, et al. Increased kidney accumulation of 131I-lysozyme in the uninephrectomized rat. Kidney, Proteins and Drugs. Contrib Nephrol, C Bianchi, V Bocci, F A Carone, R Rabkin. Karger, Basel 1993; 101: 85–91
  • Pruzanski W, Platts M E. Serum and urinary proteins, lysozyme (muramidase), and renal dysfunction in mono- and myelomonocytic leukemia. J Clin Invest 1970; 49: 1694–1708
  • Cojocel C, Docin N, Baumann K. Early nephrotoxicity at high plasma concentrations of lysozyme in rat. Lab Invest 1982; 46: 149–157
  • Selby P, Kohn J, Raymond J, et al. Nephrotic syndrome during treatment with interferon. Br Med J 1985; 290: 1180
  • Smolens P, Barnes J L, Stein J H. Effect of chronic administration of different Bence Jones proteins on rat kidney. Kidney International 1986; 30: 874–882
  • Metz-Kurschel U, Kurschel E, Niederle N, et al. Urinary enzyme excretion during treatment of malignancies with human recombinant alpha-2-interferon. Nephrol Dial Trasplant 1987; 2: 515–519
  • Sanders P W, Herrera G A, Galla H J. Human Bence Jones protein toxicity in rat proximal tubule epithelium in vivo. Kidney International 1987; 32: 851–861
  • Sanders P W, Herrera G A, Lott R L, Galla J H. Morphologic alterations of the proximal tubule in light chain-related renal disease. Kidney International 1988; 33: 881–889
  • Sanders P W, Herrera G A, Chen A, et al. Differential nephrotoxicity of low molecular weight proteins including Bence Jones proteins in the perfused rat nephron in vivo. J Clin Invest 1988; 82: 2086–2096
  • Ault B H, Stapleton F B, Gaber L, et al. Acute renal failure during therapy with recombinant human gamma interferon. N Engl J Med 1988; 319: 1397–1400
  • Batuman V. Possible pathogenetic role of low-molecular-weight proteins in Balkan nephropathy. Kidney International 1991; 40(Suppl 34)S89–S92
  • Zager R A. Rhabdomyolysis and myohemoglobinuric acute renal failure. Kidney International 1996; 49: 314–326
  • Suzuki S, Sato H, Inomata A, et al. Immunohistological localization of beta-2-microglobulin in renal tissue as an indicator of renal dysfunction. Nephron 1992; 60: 181–186
  • Hirschberg R, Adler S. Insulin-like growth factor system and the kidney: physiology, pathophysiology, and therapeutic implications. Am J Kid Dis 1998; 31: 901–919
  • Nath K A, Hostetter M K, Hostetter T M. Pathophysiology of chronic tubulointerstitial disease in rats. Interaction of dietary acid load, ammonia, and complement. J Clin Invest 1985; 79: 667–675
  • Schrier R W, Harris D CH, Chan L, et al. Tubular hypermetabolism as a factor in the progression of chronic renal failure. Amer J Kid Dis 1988; 12: 243–249
  • Clark E C, Nath K A, Hostetter M K, Hostetter T H. Role of ammonia in progressive interstitial nephritis. Amer J Kid Dis 1991; 17(Suppl 1)15–19
  • El Nahas A M. Mechanism of progression and consequences of nephron reduction. Oxford Textbook of Clinical Nephrology, S Cameron, A Davison, J P Grunfeld, D Kerr, E Ritz. Oxford University Press. 1992; 2: 1191–1227
  • Rustom R, Grime S, Costigan M, et al. Oral sodium bicarbonate reduces proximal renal tubular peptide catabolism, ammoniogenesis, and tubular damage in renal patients. Renal Failure 1998; 20: 371–382

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.