259
Views
2
CrossRef citations to date
0
Altmetric
LABORATORY STUDY

Effect of Nitric Oxide Synthase Inhibition and Saline Administration on Blood Pressure and Renal Sodium Handling During Experimental Sepsis in Rats

, M.D., , B.S., , M.D., Ph.D. & , M.D., Ph.D.
Pages 897-908 | Published online: 07 Jul 2009

References

  • Thijs L.G., van Lambalgen A.A., Groeneveld A.B.J. Sepsis and acute renal failure. Clin. Intensive Care 1991; 2: 276–281
  • Cumming A.D. Renal function in septic shock. Update in Intensive Care and Emergency Medicine, J.L. Vincent. Springer Verlag, HeidelbergGermany 1989; 348–357
  • Wichterman K.A., Baue A.E., Chaudry I.H. Sepsis and septic shock: a review of laboratory models and a proposal. J. Surg. Res. 1980; 28: 189–201
  • Chaudry I.H., Wichterman K.A., Baue A.E. Effect of sepsis on tissue adenine nucleotide levels. Surgery 1979; 85: 205–211
  • Pedersen P., Biber B., Martinelli S. Hemodynamic and hematologic changes in the standardized trauma-sepsis model in rats. Circ. Shock 1984; 14: 13–23
  • Petersen P., Saljo A., Hasselgren P.O. Protein and energy metabolism in liver tissue following intravenous infusion of live E. coli bacteria in rats. Circ. Shock 1987; 21: 59–64
  • Mori E., Hasebe M., Kobayashi K., Iijima N. Alterations in metabolite levels in carbohydrate and energy metabolism of rat in hemorrhagic shock and sepsis. Metabolism 1987; 36: 14–20
  • Honsi E., Oliveira-Dias E.P., Garcia W.E., Gontijo J.A., Figueiredo J.F. Effects of nifedipine and platelet activating factor antagonist (BN52021) in glycerol-induced acute renal failure in rats. Ren. Fail. 1996; 18(6)883–892
  • Honsi E., Oliveira-Dias E.P., Figueiredo J.F., Gontijo J.A. Accelerated recovery of glycerol-induced acute renal failure in rats with previous partial hepatectomy. Exp. Nephrol. 1998; 6: 551–556
  • Preiser J.-C., Zhang H., Vray B., Hrabak A., Vincent J.-L. Time course of inducible nitric oxide synthase activity following endotoxin administration in dogs. Nitric Oxide 2001; 5(2)208–211
  • Furchgott R.F. Role of endothelium in response of vascular smooth muscle. Circ. Res. 1983; 53: 557–573
  • Vanhoutte P.M., Rubanyi G.M., Miller V.M., Houston D.S. Modulation of vascular smooth muscle contraction by endothelium. Annals Ver. Physiology 1986; 48: 307–320
  • Kumagai K., Suzuki H., Ichikawa M., Jimbo M., Ryuzaki M., Saruta T. Nitric oxide increases renal blood flow by interacting with the sympathetic nervous system. Hypertension 1994; 24: 220–226
  • Majid D.A.S., Williams A., Kadowitz P.J., Navar G. Renal responses to intra-arterial administration of nitric oxide donor in dogs. Hypertension 1993; 22: 535–541
  • Nakamura T., Alberola A.M., Granger J.P. Role of renal interstitial pressure as a mediator of sodium retention during systemic blockage of nitric oxide. Hypertension 1993; 21: 956–960
  • Hansen J., Jacobsen T.N., Victor R.G. Is nitric oxide involved in the tonic inhibition of central sympathetic outflow in humans?. Hypertension 1994; 24: 439–444
  • Kumagai H., Averill D.B., Khosla M.C., Ferrario C.M. Role of nitric oxide and angiotensin II in the regulation of sympathetic nerve activity in spontaneously hypertensive rats. Hypertension 1993; 21: 476–484
  • Matsuoka H., Nishida H., Nomura G., Van Vliet B.N., Toshima H. Hypertension induced by nitric oxide synthesis inhibition is renal nerve dependent. Hypertension 1994; 23: 971–975
  • Knoblich P.R., Freeman R.H., Villarreal D. Pressure-dependent renin releases during chronic blockage of nitric oxide synthase. Hypertension 1996; 28: 738–742
  • Menegon L.F., Figueiredo J.F., Gontijo J.A.R. Effect of chronic metabolic acidosis on renal growth and renal sodium handling in uninephrectomized rats. Ren. Fail. 1999; 21: 13–22
  • Michelotto J.B., Carvalheira J.B.C., Saad M.J.A., Gontijo J.A.R. Effects of intracerebroventricular insulin microinjection on renal sodium handling in kidney-denervated rats. Brain Res. Bull. 2002; 57: 613–618
  • Kuhlmann M.K., Shahmir E., Maasarani E., Akhtar S., Thevanayagam V., Vadgama J.V., Kopple J.D. New experimental model of acute renal failure and sepsis in rats. J. Parenter. and Enteral. Nutr. 1994; 18: 477–485
  • Lovenberg W. Techniques for measurements of blood pressure. Hypertension 1987; 9: 15–16
  • Pedersen P.V., Warner B.W., Bjornson H.S., Hiyama D.T., Li S., Rigel D.F., Hasselgren P.-O., Ficher J.E. Hemodynamic and metabolic alterations during experimental sepsis in young and adult rats. Surg. Gynecol. Obstet. 1989; 168: 148–156
  • Shultz P.J., Raij L. Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis. J. Clin. Invest. 1992; 90: 1718–1725
  • Schulz R., Nava E., Moncada S. Induction and potential biological relevance of a Ca-independent nitric oxide synthase in the myocardium. Brit. J. Pharmacol. 1992; 105: 575–580
  • Aiura K., Ueda M., Endo M., Kitajima M. Circulating concentrations and physiologic role of atrial natriuretic peptide during endotoxic shock in the rat. Crit. Care Med. 1995; 23: 1898–1906
  • Granger J.P. Regulation of sodium excretion by renal interstitial hydrostatic pressure. Fed. Proc. 1986; 45: 2892–2896
  • Mattson D.L., Roman R.J., Cowley A.W., Jr. Role of nitric oxide in renal papillary blood flow and sodium excretion. Hypertension 1992; 19: 766–769
  • Stoos B.A., Carretero A.O., Garvin J.L. Endothelium-derived relaxing factor inhibits transport in cultured cortical collecting duct cells (abstract). Hypertension 1991; 18: 390
  • Lahera V., Salom M.G., Miranda-Guardiola F., Moncada S., Romero J.C. Effects of NG-nitro-l-arginine methyl ester on renal function and blood pressure. Am. J. Physiol. 1991; 261: F1033–F1037
  • Nadler E.P., Dickinson E.C., Beer-Stolz D., Alber S.M., Watkins S.C., Pratt D.W., Ford H.R. Scavenging nitric oxide reduces hepatocellular injury after endotoxin challenge. Am. J. Physiol. 2001; 281: G173–G181
  • Kengatharan K.M., DeKimpe S.J., Thiemermann C. Role of nitric oxide in the circulatory failure and organ injury in a rodent model of gram-positive shock. Brit. J. Pharmacol. 1996; 119: 1411–1421
  • Sakuma I.I., Togashi H., Yoshida M., Saito H., Tamura M., Kobayashi T., Yasuda H., Gross S.S., Levi R. NG-Methyl-l-arginine, an inhibitor of l-arginine-derived nitric oxide synthesis, stimulates renal sympathetic tone?. Circ. Res. 1992; 70: 607–611
  • Togashi H., Sakuma I., Yoshiota M., Kobayashi T., Yasuda H., Kitabataki A., Saito H., Gross S.S., Levi R. A central action of nitric oxide in blood pressure regulation. J. Pharmacol. Exp. Ther. 1992; 262: 343–347
  • Harada S., Tokunaga S., Monohara M., Masaki H., Tagawa T., Imaizumi K., Takeshita A. Inhibition of nitric oxide formation in the nucleus tractus solitarius. Circ. Res. 1993; 72: 511–516
  • Shapoval L.N., Sagach V.F., Pobegailo L.S. Nitric oxide influences ventro lateral medullary mechanisms of vasomotor control in the cat. Neurosci. Lett. 1991; 132: 47–50
  • Smith E.F., 3, III, Slivjak M.J., Egan J.W., Gagnon R., Arleth A.J., Esser K.M. Fluid resuscitation improves survival of endotoxemic or septicemic rats: possible contribution of tumor necrosis factor. Pharmacology 1993; 46: 254–267
  • Heemskerk A.E.J., Huisman E., van Lambalgen A.A., van den Bos G.C., Hennekes M., Thijs L.G., Tangelder G.J. Renal function and oxygen consumption during bacteremia and endotoxemia in rats. Nephrol. Dial. Transplant. 1997; 12: 1586–1594

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.