133
Views
10
CrossRef citations to date
0
Altmetric
Research Article

SYNTHETIC RETINOIDS DISSOCIATE COACTIVATOR BINDING FROM COREPRESSOR RELEASE

Pages 31-61 | Published online: 11 Nov 2002

REFERENCES

  • Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P., Evans R. M. The Nuclear Receptor Superfamily: The Second Decade. Cell 1995; 83: 835–839
  • Gronemeyer H., Laudet V. Protein Profile 1995; 2(11), Transcription Factors 3: Nuclear Receptors
  • Chambon P. Retinoid Signalling Pathway: Molecular and Genetic Analyses. Semin. Cell Biol. 1994; 5: 115–125
  • Kastner P., Mark M., Chambon P. Nonsteroid Nuclear Receptors: What are Genetic Studies Telling Us About Their Role in Real Life?. Cell 1995; 83: 859–869
  • Dollé P., Ruberte E., Kastner P., Petkovich M., Stoner C. M., Gudas L. J., Chambon P. Differential Expression of the Genes Encoding the Retinoic Acid Receptors α, β, and γ and CRABP in the Developing Limbs of the Mouse. Nature 1989; 342: 702–705
  • Aranda A., Pasqual A. Nuclear Hormone Receptors and Gene Expression. Physiol. Rev. 2001; 81: 1269–1304
  • Glass C. K., Rosenfeld M. G. The Coregulator Exchange in Transcriptional Functions of Nuclear Receptors. Genes Dev. 2000; 14: 121–141
  • Voegel J., Heine M.J. S., Zechel C., Chambon P., Gronemeyer H. TIF2, a 160 kD Transcriptional Mediator for the Ligand-Dependent Activation Function AF-2 of Nuclear Receptors. EMBO J. 1996; 15(14)2667–3675
  • Onate S. A., Tsai S. Y., Tsai M. -J., O'Malley B. W. Sequence and Characterization of a Coactivator for the Steroid Hormone Receptor Superfamily. Science 1995; 270: 1354–1357
  • Hörlein A. J., Näär A. M., Heinzel T., Torchia J., Gloss B., Kurokawa R., Ryan A., Kamei Y., Söderström M., Glass C. K., Rosenfeld M. G. Ligand-Independent Repression by the Thyroid Hormone Receptor Mediated by a NUCLEAR Receptor Corepressor. Nature 1995; 377: 397–404
  • Chen J. D., Evans R. M. A Transcriptional Co-Repressor That Interacts With Nuclear Hormone Receptors. Nature 1995; 377: 454–457
  • Cavaillès V., Dauvois S., L'Horset F., Lopez G., Hoare S., Kushner P. J., Parker M. G. Nuclear Factor RIP 140 Modulates Transcriptional Activation by the Estrogen Receptor. EMBO J. 1995; 14(15)3741–3751
  • Lee C. -H., Chinpaisal C., Wei L. -N. Cloning and Characterization of Mouse RIP 140, a Corepressor for Nuclear Orphan Receptor TR2. Mol. Cell. Biol. 1998; 18(11)6745–6755
  • Le Douarin B., Zechel C., Garnier J. M., Lutz Y., Tora L., Pierrat B., Heery D., Gronemeyer H., Chambon P., Losson R. The N-terminal Part of TIF1, a Putative Mediator of the Ligand-Dependent Activation Function (AF-2) of Nuclear Receptors, is Fused to B-raf in the Oncogenic Protein T18. EMBO J. 1995; 14(9)2020–2033
  • Remboutsika E., Lutz Y., Gansmuller A., Vonesch J.-L., Losson R., Chambon P. The Putative Nuclear Receptor TIF1α is Tightly Associated With Euchromatin. J. Cell Sci. 1999; 112: 1671–1683
  • Le Douarin B., Nielson A. L., Garnier J. M., Ichinose H., Jeanmougin F., Losson R., Chambon P. A Possible Involvement of TIF1α and TIF1β in the Epigenetic Control of Transcription by Nuclear Receptors. EMBO J. 1996; 15(23)6701–6715
  • vom Baur E., Zechel C., Heery D., Heine M.J. S., Garnier J. M., Vivat V., Le Douarin B., Gronemeyer H., Chambon P. Differential Ligand-Dependent Interactions Between the AF-2 Activating Domain of Nuclear Receptors and the Putative Transcriptional Intermediary Factors mSUG1 and TIF1. EMBO J. 1996; 15(1)110–124
  • Rubin D. M., Coux O., Wefes I., Hengartner C., Young R. A., Goldberg A. L., Finley D. Identification of the Gal4 Suppressor SUG1 as a SUBUNIT of the Yeast 26S Proteasome. Nature 1996; 379: 655–657
  • Germain P., Iyer J., Zechel C., Gronemeyer H. Co-regulator Recruitment and the Mechanism of Retinoic Acid Receptor Synergy. Nature 2002; 415: 187–192
  • Danielian P. S., White R., Lees J. A., Parker M. G. Identification of a Conserved Region Required for Hormone Dependent Transcriptional Activation by Steroid Hormone Receptors. EMBO J. 1992; 11: 1025–1033
  • Durand B., Saunders M., Gaudon C., Roy B., Losson R., Chambon P. Activation Function 2 (AF2) of Retinoic Acid Receptor and 9-cis Retinoic Acid Receptor: Presence of a Conserved Autonomous Constitutive Activating Domain and Influence of the Nature of the Response Element on AF-2 Activity. EMBO J. 1994; 13: 5370–5382
  • Hu X., Lazar M. A. The CoRNR Motif Controls the Recruitment of Corepressors by Nuclear Hormone Receptors. Nature 1999; 402: 93–96
  • Perissi V., Staszewski L. M., McInerney E. M., Kurokawa R., Krones A., Rose D. W., Lambert M. H., Milburn M. V., Glass C. K., Rosenfeld M. G. Molecular Determinants of Nuclear Receptor-Corepressor Interaction. Genes Dev. 1999; 13: 3198–3208
  • Nagy L., Kao H. -Y., Love J. D., Li C., Banayo E., Gooch J. T., Krishna V., Chatterjee K., Evans R. M., Schwabe J.W. R. Mechanism of CorepressorBinding and Release from Nuclear Hormone Receptors. Genes Dev. 1999; 13: 3209–3216
  • Hu X., Lazar M. A. Transcriptional Repression by Nuclear Receptors. Trends Endocrinol. Metab. 2000; 11: 6–10
  • Li J., Wang J., Wang J., Nawaz Z., Liu J. M., Qin J., Wong J. Both Corepressor Proteins SMRT and N-CoR Exist in Large Protein Complexes Containing HDAC3. EMBO J. 2000; 19: 4342–4350
  • Heery D., Kalkhoven E., Hoare S., Parker M. G. A Signature Motif in Transcriptional Co-Activators Mediates Binding to Nuclear Receptors. Nature 1997; 387: 733–736
  • Chen H., Lin R. J., Xie W., Wilpitz D., Evans R. M. Regulation of Hormone-Induced Histone Hyperacetylation and Gene Activation via Acetylation of an Acetylase. Cell 1999; 98: 675–686
  • Renaud J. -P., Rochel N., Ruff M., Vivat V., Chambon P., Gronemeyer H., Moras D. Crystal Structure of the RARγ Ligand-Binding Domain Bound to All-Trans Retionic Acid. Nature 1995; 378: 681–689
  • Klaholz B. P., Renaud J. -P., Mitschler A., Zusi C., Chambon P., Gronemeyer H., Moras D. Conformational Adaptation of Agonists to the Human Nuclear Receptor RARγ. Nat. Struct. Biol. 1998; 5: 199–202
  • Nolte R. T., Wisely G. B., Westin S., Cobb J. E., Lambert M. H., Kurokawa R., Rosenfeld M. G., Willson T. M., Glass C. K., Milburn M. V. Ligand Binding and Co-Activator Assembly of the Peroxisome-Activated Receptor-γ. Nature 1998; 395: 137–143
  • Shiau A. K., Barstad D., Loria P. M., Cheng L., Kushner P. J., Agard D. A., Greene G. L. The Structural Basis of Estrogen Receptor/Coactivator Recognition and the Antagonism of This Interaction by Tamoxifen. Cell 1998; 95: 927–937
  • Renaud J. P., Moras D. Structural Studies on Nuclear Receptors. Cell. Mol. Life Sci. 2000; 57: 1748–1769
  • Bourguet W., Vivat V., Wurtz J. -M., Chambon P., Gronemeyer H., Moras D. Crystal Structure of a Heterodimeric Complex of RAR and RXR Ligand-Binding Domains. Mol. Cell 2000; 5: 289–298
  • Brzozowski A. M., Pike A. C., Dauter Z., Hubbard R. E., Bonn T., Engström O., Öhman L., Greene G. L., Gustafsson J-A., Carlquist M. Molecular Basis of Agonism and Antagonism in the Oestrogen Receptor. Nature 1997; 389: 753–758
  • Ruthardt A., Testa U., Nervi C., Ferrucci P. F., Grignani F., Puccetti E., Grignani F., Peschle C., Pelicci P. G. Opposite Effects of the Acute Promyelocytic Leukemia PML-Retinoic Acid Receptor α (RARα) and PLZF-RARα Fusion Proteins on Retinoic Acid Signalling. Mol. Cell. Biol. 1997; 17: 4859–4869
  • Grignani F., De Matteis S., Nervi C., Tomassoni L., Gelmetti V., Cioce M., Fanelli M., Ruthardt M., Ferrara F. F., Zamir I., Seiser C., Grignani F., Lazar M. A., Minucci S., Pelicci P. G. Fusion Proteins of the Retinoic Acid Receptor-α Recruit Histone Deacetylase in Promyelocytic Leukemia. Nature 1998; 391: 815–818
  • Chen J. -Y., Clifford J., Zusi C., Starrett J., Tortolani D., Ostrowski J., Reczek P. R., Chambon P., Gronemeyer H. Two Distinct Actions of Retinoid Ligands. Nature 1996; 382: 819–822
  • Ausubel F. M., Brent R., Kingston R., Moore D., Seidman J. J., Smith J., Struhl K. Current Protocols in Molecular Biology. John Wiley & Sons, New York 1993
  • Tora L., White J., Brou C., Tasset D., Webster N., Scheer E., Chambon P. The Human Estorgen Receptor Has Two Independent Nonacidic Transcriptional Activation Functions. Cell 1989; 59: 477–487
  • Nagpal S., Friant S., Nakshatri H., Chambon P. RARs and RXRs: Evidence for the Two Autonomous Transactivation Functions (AF-1 and AF-2) and Heterodimerization In Vivo. EMBO J. 1993; 12: 2349–2360
  • Nagpal S., Saunders M., Kastner P., Durand B., Nakshatri H., Chambon P. Promoter-Context and Response Element-Dependent Specificity of the Transcriptional Activation Functions of Retinoic Acid Receptors. Cell 1992; 70: 1007–1019
  • Vivat V., Zechel C., Wurtz J. -M., Bourguet W., Kagechicka H., Umemiya H., Shudo K., Moras D., Gronemeyer H., Chambon P. A Mutation Mimicking Ligand-Induced Conformational Change Yields a Constitutive RXR That Senses Allosteric Effects in Heterodimers. EMBO J. 1997; 16: 5697–5709
  • Voegel J., Heine M.J. S., Tini M., Vivat V., Chambon P., Gronemeyer H. The Coactivator TIF2 Contains Three Nuclear Receptor-Binding Motifs and Mediates Transactivation Through CBP Binding-Dependent and -Independent Pathways. EMBO J. 1998; 17: 507–519
  • Bocquel M. T., Kumar V., Stricker C., Chambon P, Gronemeyer H. The Contribution of the N–and C-Terminal Regions of Steroid Receptors to Activation of Transcription is Both Receptor‐ and Cell-Specific. Nucl. Acids Res. 1989; 17: 2581–2595
  • Bourguet W., Andry V., Iltis C., Klaholz B., Potier N., van Dorsselaer A., Chambon P., Gronemeyer H., Moras D. Heterodimeric Complex of RAR and RXR Nuclear Receptor Ligand-Binding Domains: Purification, Crystallization, and Preliminary X-Ray Diffraction Analysis. Protein Expr. Purif. 2000; 19: 284–288
  • Keidel S., LeMotte P, Apfel C. Different Agonist–and Antagonist-Induced Conformational Changes in Retinoic Acid Receptors Analyzed by Protease Mapping. Mol. Cell. Biol. 1994; 14: 287–298
  • Géhin M., Vivat V., Wurtz J. -M., Losson R., Chambon P., Moras P., Gronemeyer H. Structural Basis for Engineering of Retinoic Acid Receptor Isotype-Selective Agonists and Antagonists. Chem. Biol. 1999; 6: 519–529
  • Otrowski J., Roalsvig T., Hammer L., Marinier A., Starrett J. E., Jr., Yu K. -L., Reczek P. Serine 232 and Methionine 272 Define the Ligand Binding Pocket in Retinoic Acid Receptor Subtypes. J. Biol. Chem. 1998; 273: 3490–3495
  • Chen J. -Y., Penco S., Ostrowski J., Balguer P., Pons M., Starrett J. E., Reczek P., Chambon P., Gronemeyer H. RAR-Specific Agonist/Antagonists Which Dissociate Transactivation and AP1 Transrepression Inhibit Anchorage-Independent Cell Proliferation. EMBO J 1995; 14: 1187–1197
  • Roy B., Taneja R., Chambon P. Synergistic Activation of Retinoic Acid (RA)-Responsive Genes and Induction of Embryonal Carcinoma Cell Differentiation by an RA Receptor α (RARα)-, RARβ, or RARγ-Selective Ligand in Combination With a Retinoid X Receptor-Specific Ligand. Mol. Cell. Biol. 1995; 15: 6481–6487
  • Taneja R., Roy B., Plassat J. -L., Zusi C., Ostrowski J., Reczek P., Chambon P. Cell-Type and Promoter-Context Dependent Retinoic Acid Receptor (RAR) Redundancies for RARβ1 and Hoxa-1 Activation in F9 and P19 Cells Can be Artefactually Generated by Gene Knockouts. Proc. Natl. Acad. Sci. USA 1996; 93: 6197–6202
  • Lehmann J. M., Jong L., Fanjul A., Cameron J. F., Lu X. P., Haefner P., Dawson M. I., Pfahl M. Retinoids Relective for Retinoid X Receptor Response Pathways. Science 1992; 258: 1944–1946
  • Zhang J., Hu X., Lazar M. A. A Novel Role for Helix 12 of Retinoid X Receptor in Regulating Repression. Mol. Cell. Biol. 1999; 19: 6448–6457
  • Leid M., Kastner P., Lyons R., Nakshatri H., Saunders M., Zacharewski T., Chen J. Y., Staub A., Garnier J. -M., Mader S., Chambon P. Purification, Cloning and RXR Identity of the HeLa Cell Factor With Which RAR or TR Heterodimerize to Bind Target Sequences Efficiently. Cell 1992; 68: 377–395
  • Westin S., Kurokawa R., Nolte R. T., Wisely G. B., McInnerney E. M., Rose D. W., Milburn M. V, Rosenfeld M. G., Glass C. K. Interactions Controlling the Assembly of Nuclear-Receptor Heterodimers and Co-Activators. Nature 1998; 395: 199–202
  • Ordentlich P., Downes M., Xie W., Genin A., Spinner N. B., Evans R. M. Unique Forms of Human and Mouse Nuclear Receptor Corepressor SMRT. Proc. Natl. Acad. Sci. USA 1999; 96: 2639–2644
  • Cohen R. N., Putney A., Wondisford F. E., Hollenberg A. N. The Nuclear Corepressors Recognize Distinct Nuclear Receptor Complexes. Mol. Endocrinol. 2000; 14: 900–914
  • Spencer T. E., Jenster G., Burcin M., Allis C. D., Zhou J., Mizzen C. A., McKenna N. J., Onate S. A., Tsai S. Y., Tsai M. -J., O'Malley B. W. SteroidReceptor Coactivator-1 is a Histone Acetyltransferase. Nature 1997; 389: 194–198
  • Ryu S., Stein J. P., Chung C. -T., Lee Y. -J., Kim J. H. Enhanced Apoptosis and Radiosensitization by Combined 13-cis Retinoic Acid and Interferon α2; Role of RARβ Gene. Int. J. Radiat. Oncol. Biol. Phys. 2001; 51: 785–790
  • Di Renzo J., Söderström M., Kurokawa R, Ogliastro M. -H., Ricote M., Ingrey S., Hörlein A., Rosenfeld M. G., Glass C. K. Peroxisome Proliferator Activated Receptor and Retinoic Acid Receptors Differentially Control the Interactions of Retinoid X Receptor Heterodimers With Ligands, Coactivators, and Corepressors. Mol. Cell. Biol. 1997; 17: 2166–2176
  • Smith C. L., Nawaz Z., O'Malley B. W. Coactivator and Corepressor Regulation of the Agonist/Antagonist Activity of the Mixed Antiestrogen, 4-Hydroxytamoxifen. Mol. Endocrinol. 1997; 11: 657–666
  • Jackson T. A., Richer J. K., Bain D. L., Takimoto G. S., Tung L., Horwitz K. B. The Partial Agonist Activity of the Antagonist-Occupied Steroid Receptorsis Controlled by a Novel Hinge Domain Binding Coactivator L7/SPA andthe Corepressors N-CoR and SMRT. Mol. Endocrinol. 1997; 11: 693–705
  • Hong S. -H, Privalsky M. L. Retinoid Isomers Differ in the Ability to Induce Release of SMRT Corepressor from Retinoic Acid Receptor-α. J. Biol. Chem. 1999; 274: 2885–2892
  • Lavinsky R. M., Jepsen K., Heinzel T., Torchia J., Mullen T. -M., Schiff R., Del-Rio A. L., Ricote M., Ngo S., Gemsch J., Hilsenbeck S. G., Osborne C. K., Glass C. K., Rosenfeld M. G., Rose D. W. Diverse Signalling Pathways Modulate Nuclear Receptor Recruitment of N-CoR and SMRT Complexes. Proc. Natl. Acad. Sci. USA 1998; 95: 2920–2925
  • Kurokawa R., Söderström M., Hörlein A., Halachmi S., Brown M., Rosenfeld M. G., Glass C. K. Polarity-Specific Activities of Retinoic Acid Receptors Determined by a Co-Repressor. Nature 1995; 377: 451–454
  • Eng F.C. S., Barsalou A., Akutsu N., Mercier I., Zechel C., Mader S., White J. H. Different Classes of Coactivators Recognize Distinct but Overlapping Binding Sites on the Estrogen Receptor Ligand Binding Domain. J. Biol. Chem. 1998; 273: 28371–28377
  • Egea P. F., Mitschler A., Rochel N., Ruff M., Chambon P., Moras D. Crystal Structure of the Human RXRα Ligand-Binding Domain Bound to Its Natural Ligand: 9-cis Retinoic Acid. EMBO J. 2000; 19: 2592–2601
  • Bourguet W., Germain P., Gronemeyer H. Nuclear Receptor Ligand-Binding Domains: Three Dimensional Structures, Molecular Interactions and Pharmacologiacl Implications. Trends Pharamcol. Sci. 2000; 21: 381–388
  • Pike A.C. W., Brzozowski A. M., Hubbard R. A., Bonn T., Thorsell A. -G., Engström O., Ljunggren J., Gustafsson J.-A., Carlquist M. Structure of the Ligand-Binding Domain of the Oestrogen Receptor Beta in the Presence of a Partial Agonist and a Full Antagonist. EMBO J. 1999; 18: 4608–4618
  • Oberfield J. L., Collins J. L., Holmes C. P., Goreham D. P., Cooper J. P., Cobb J. E., Lenhard J. M., Hull-Ryde E. A., Mohr C. P., Blanchard S. G., Parks D. J., Moore L. B., Lehmann J. M., Plunket K., Miller A. B., Milburn M. V., Kliewer S. A., Willson T. M. A Peroxisome Proliferator-Activated Receptor γ Ligand Inhibits Adipocyte Differentiation. Proc. Natl. Acad. Sci. USA 1999; 96: 6102–6106

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.