2,254
Views
284
CrossRef citations to date
0
Altmetric
REVIEW

Thermodynamics of Protein–Ligand Interactions: History, Presence, and Future Aspects

, &
Pages 1-52 | Published online: 23 Jul 2009

References

  • Lodwig TH, Smeaton WA. The ice calorimeter of Lavoisier and Laplace and some of its critics. Ann Sci 1974; 31: 1–18
  • Wintermeyer-Weppler U. Zur Geschichte der Entwicklung der Physikalischen Chemie. Dissertation, Frankfurt am Main 1974
  • Daumas M. Les appareils D'expérimentation de lavoisier. Chymia, LD Tenney. University of Pennsylvania Press, Philadelphia 1950; 3: 43–62
  • Guerlac H. Chemistry as a branch of physics: Laplace's collaboration with Lavoisier. Historical Studies in the Physical Sciences, R McCormmach. Princeton. 1976; 7: 193–276
  • Hemminger W, Höhne GWH. Grundlagen Der Kalorimetrie. Verlag Chemie, Weinheim 1979
  • Pledge HT. Science Since 1500: A Short History of Mathematics, Physics, Chemistry, Biology. His Majesty's Stationery Office, London 1939
  • Cobb C, Goldwhite H. Creations of Fire. Plenum Press, New York 1995
  • Hudson J. The History of Chemistry. Macmillan, London 1992
  • Partington JR. A Short History of Chemistry. 3rd ed. Dover Publications, New York 1989
  • Oscarson JL, Izatt RM. Determination of thermodynamic properties. Physical Methods of Chemistry. 2nd ed, BW Rossiter, RC Baetzold. John Wiley & Sons, New York 1992; Vol. 2
  • Wadsö I. Microcalorimetry of aqueous and biological systems. Solution Calorimetry: Experimental Thermodynamics, KN Marsh, PAG O’Hare. Blackwell Scientific Publications, Oxford 1994; 267–302
  • Wadsö I. Microcalorimetry and its application in biological sciences. New Techniques in Biophysics and Cell Biology, RH Pain, BJ Smith. John Whiley & Sons, London 1975; 2: 85–126
  • Privalov PL, Potekhin SA. Scanning microcalorimetry in studying temperature-induced changes in proteins. Method Enzymol 1986; 131: 4–51
  • Privalov PL. Thermodynamic problems of protein structure. Ann Rev Biophys & Biophys Chem 1989; 18: 47–69, [CROSSREF]
  • Sturtevant M. Biochemical applications of differential scanning calorimetry. Ann Rev Phys Chem 1987; 38: 463–488, [CROSSREF]
  • Freire E. Differential scanning calorimetry. Method Mol Biol 1995; 40: 191–218
  • Chen A, Wadso I. Simultaneous determination of delta G, delta H and delta S by an automatic microcalorimetric titration technique: application to protein ligand binding. J Biochem Biophys Meth 1982; 6: 307–316, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Freire E, Mayorga OL, Straume M. Isothermal titration calorimetry. Anal Chem 1990; 62: 950A–959A
  • Wiseman T, Williston S, Brandts JF, Lin LN. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 1989; 179: 131–137, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • MicroCal LLC. VP-ITC Microcalorimeter, User's Manual. MAU130030 (Rev. A). ed. MicroCal LLC, Northampton 2003
  • Bains G, Freire E. Calorimetric determination of cooperative interactions in high affinity binding processes. Anal Biochem 1991; 192: 203–206, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bhatnagar RS, Gordon JI. Thermodynamic studies of myristoyl-CoA:protein N-myristoyltransferase using isothermal titration calorimetry. Method Enzymol 1995; 250: 467–486
  • Christensen JJ, Hansen LD, Izatt RM. Handbook of Proton Ionization Heats and Related Thermodynamic Quantities. John Wiley & Sons, New York 1976
  • Fukada H, Takahashi K. Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 m potassium chloride. Proteins 1998; 33: 159–166, [PUBMED], [INFOTRIEVE]
  • Jelesarov I, Bosshard HR. Thermodynamics of ferredoxin binding to ferredoxin:NADP+ reductase and the role of water at the complex interface. Biochemistry 1994; 33: 13321–13328, [PUBMED], [INFOTRIEVE]
  • Cooper A, Johnson CM. Isothermal titration microcalorimetry. Method Mol Biol 1994; 22: 137–150
  • Sigurskjold BW, Altman E, Bundle DR. Sensitive titration microcalorimetric study of the binding of salmonella O-antigenic oligosaccharides by a monoclonal antibody. Eur J Biochem 1991; 197: 239–246, [PUBMED], [INFOTRIEVE]
  • Bundle DR, Sigurskjold BW. Determination of accurate thermodynamics of binding by titration microcalorimetry. Method Enzymol 1994; 247: 288–305
  • Cooper A, Johnson CM. Introduction to microcalorimetry and biomolecular energetics. Method Mol Biol 1994; 22: 109–124
  • Fisher HF, Singh N. Calorimetric methods for interpreting protein-ligand interactions. Method Enzymol 1995; 259: 194–221
  • Wymann J, Gill SJ. Binding and Linkage: Functional Chemistry of Biological Macromolecules. University Science Books, Mill Valley 1990
  • Connors KA. Binding Constants: The Measurement of Molecular Complex Stability. John Wiley & Sons, New York 1987
  • Di Cera E. Thermodynamic Theory of Site-Specific Binding Processes in Biological Macromolecules. Cambridge University Press, Cambridge 1995
  • Gopal B, Swaminathan CP, Bhattacharya S, Bhattacharya A, Murthy MR, Surolia A. Thermodynamics of metal ion binding and denaturation of a calcium binding protein from Entamoeba histolytica. Biochemistry 1997; 36: 10910–10916, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hyre DE, Spicer LD. Thermodynamic evaluation of binding interactions in the methionine repressor system of Escherichia coli using isothermal titration calorimetry. Biochemistry 1995; 34: 3212–3221, [PUBMED], [INFOTRIEVE]
  • Eisenstein E, Yu HD, Schwarz FP. Cooperative binding of the feedback modifiers isoleucine and valine to biosynthetic threonine deaminase from Escherichia coli. J Biol Chem 1994; 269: 29423–29429, [PUBMED], [INFOTRIEVE]
  • Bruzzese FJ, Connelly PR. Allosteric properties of inosine monophosphate dehydrogenase revealed through the thermodynamics of binding of inosine 5′-monophosphate and mycophenolic acid. Temperature dependent heat capacity of binding as a signature of ligand-coupled conformational equilibria. Biochemistry 1997; 36: 10428–10438, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Ferrari ME, Lohman TM. Apparent heat capacity change accompanying a nonspecific protein–DNA interaction Escherichia coli SSB tetramer binding to oligodeoxyadenylates. Biochemistry 1994; 33: 12896–12910, [PUBMED], [INFOTRIEVE]
  • Doyle ML, Louie G, Dal Monte PR, Sokoloski TD. Tight binding affinities determined from thermodynamic linkage to protons by titration calorimetry. Method Enzymol 1995; 259: 183–194
  • Baker BM, Murphy KP. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys J 1996; 71: 2049–2055, [PUBMED], [INFOTRIEVE]
  • Bradshaw JM, Waksman G. Calorimetric investigation of proton linkage by monitoring both the enthalpy and association constant of binding: application to the interaction of the Src SH2 domain with a high-affinity tyrosyl phosphopeptide. Biochemistry 1998; 37: 15400–15407, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Doyle ML, Hensley P. Tight ligand binding affinities determined from thermodynamic linkage to temperature by titration calorimetry. Method Enzymol 1998; 295: 88–99
  • Li J, Swanson RV, Simon MI, Weis RM. The response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry 1995; 34: 14626–14636, [PUBMED], [INFOTRIEVE]
  • Hu DD, Eftink MR. Thermodynamic studies of the interaction of trp aporepressor with tryptophan analogs. Biophys Chem 1994; 49: 233–239, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Khalifah RG, Zhang F, Parr JS, Rowe ES. Thermodynamics of binding of the CO2-competitive inhibitor imidazole and related compounds to human carbonic anhydrase I: an isothermal titration calorimetry approach to studying weak binding by displacement with strong inhibitors. Biochemistry 1993; 32: 3058–3066, [PUBMED], [INFOTRIEVE]
  • Sigurskjold BW, Berland CR, Svensson B. Thermodynamics of inhibitor binding to the catalytic site of glucoamylase from Aspergillus niger determined by displacement titration calorimetry. Biochemistry 1994; 33: 10191–10199, [PUBMED], [INFOTRIEVE]
  • Sigurskjold BW. Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal Biochem 2000; 277: 260–266, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Aqvist J, Medina C, Samuelsson JE. A new method for predicting binding affinity in computer-aided drug design. Protein Eng 1994; 7: 385–391, [PUBMED], [INFOTRIEVE]
  • Cummings MD, Hart TN, Read RJ. Atomic solvation parameters in the analysis of protein–protein docking results. Protein Sci 1995; 4: 2087–2099, [PUBMED], [INFOTRIEVE]
  • Horton N, Lewis M. Calculation of the free energy of association for protein complexes. Protein Sci 1992; 1: 169–181, [PUBMED], [INFOTRIEVE]
  • Krystek S, Stouch T, Novotny J. Affinity and specificity of serine endopeptidase-protein inhibitor interactions: empirical free energy calculations based on x-ray crystallographic structures. J Mol Biol 1993; 234: 661–679, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Searle MS, Williams DH, Gerhard U. Partitioning of free energy contributions in the estimation of binding constants: residual motions and consequences for amide–amide hydrogen bond strengths. J Amer Chem Soc 1992; 114: 10697–10704
  • Wallqvist A, Jernigan RL, Covell DG. A preference-based free-energy parameterization of enzyme-inhibitor binding. Applications to HIV-1-protease inhibitor design. Protein Sci 1995; 4: 1881–1903
  • Williams DH, Cox JPL, Doig AJ, Gardner M, Gerhard U, Kaye PT, Lal AR, Nicholls IA, Salter CJ, Mitchell RC. Toward the semiquantitative estimation of binding constants: guides for peptide–petpide binding in aqueous solution. J Amer Chem Soc 1991; 113: 7020–7030
  • Williams DH, Searle MS, Mackay JP, Gerhard U, Maplestone RA. Toward an estimation of binding constants in aqueous solution: studies of associations of vancomycin group antibiotics. Proc Natl Acad Sci USA 1993; 90: 1172–1178, [PUBMED], [INFOTRIEVE]
  • Eftink MR, Anusiem AC, Biltonen RL. Enthalpy–entropy compensation and heat capacity changes for protein–ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease A. Biochemistry 1983; 22: 3884–3896, [PUBMED], [INFOTRIEVE]
  • Lumry R, Rajender S. Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers 1970; 9: 1125–1227, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Chervenak MC, Toone EJ. A direct measure of the contribution of solvent reorganization to the enthalpy of ligand binding. J Amer Chem Soc 1994; 116: 10533–10539
  • Connelly PR, Thomson JA, Fitzgibbon MJ, Bruzzese FJ. Probing hydration contributions to the thermodynamics of ligand binding by proteins. Enthalpy and heat capacity changes of tacrolimus and rapamycin binding to FK506 binding protein in D2O and H2O. Biochemistry 1993; 32: 5583–5590, [PUBMED], [INFOTRIEVE]
  • Ladbury JE. Just add water! The effect of water on the specificity of protein–ligand binding sites and its potential application to drug design. Chem Biol 1996; 3: 973–980, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Holdgate GA, Tunnicliffe A, Ward WH, Weston SA, Rosenbrock G, Barth PT, Taylor IW, Pauptit RA, Timms D. The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: a thermodynamic and crystallographic study. Biochemistry 1997; 36: 9663–9673, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bhat TN, Bentley GA, Boulot G, Greene MI, Tello D, Dall’Acqua W, Souchon H, Schwarz FP, Mariuzza RA, Poljak RJ. Bound water molecules and conformational stabilization help mediate an antigen–antibody association. Proc Natl Acad Sci USA 1994; 91: 1089–1093, [PUBMED], [INFOTRIEVE]
  • Xavier KA, Shick KA, Smith-Gil SJ, Willson RC. Involvement of water molecules in the association of monoclonal antibody HyHEL-5 with bobwhite quail lysozyme. Biophys J 1997; 73: 2116–2125, [PUBMED], [INFOTRIEVE]
  • Goldbaum FA, Schwarz FP, Eisenstein E, Cauerhff A, Mariuzza RA, Poljak RJ. The effect of water activity on the association constant and the enthalpy of reaction between lysozyme and the specific antibodies D1.3 and D44.1. J Mol Recognit 1996; 9: 6–12, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kornblatt JA, Kornblatt MJ, Hoa GH, Mauk AG. Responses of two protein–protein complexes to solvent stress: does water play a role at the interface?. Biophys J 1993; 65: 1059–1065, [PUBMED], [INFOTRIEVE]
  • Robinson CR, Sligar SG. Molecular recognition mediated by bound water: a mechanism for star activity of the restriction endonuclease EcoRI. J Mol Biol. 1993; 234: 302–306, [PUBMED], [INFOTRIEVE]
  • Pearce KH Jr, Ultsch MH, Kelley RF, de Vos AM, Wells JA. Structural and mutational analysis of affinity-inert contact residues at the growth hormone-receptor interface. Biochemistry 1996; 35: 10300–10307, [PUBMED], [INFOTRIEVE]
  • Connelly PR, Aldape RA, Bruzzese FJ, Chambers SP, Fitzgibbon MJ, Fleming MA, Itoh S, Livingston DJ, Navia MA, Thomson JA, Wilson KP. Enthalpy of hydrogen bond formation in a protein–ligand binding reaction. Proc Natl Acad Sci USA 1994; 91: 1964–1968, [PUBMED], [INFOTRIEVE]
  • Frisch C, Schreiber G, Johnson CM, Fersht AR. Thermodynamics of the interaction of barnase and barstar: changes in free energy versus changes in enthalpy on mutation. J Mol Biol 1997; 267: 696–706, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Mark AE, van Gunsteren WF. Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies. J Mol Biol 1994; 240: 167–176, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Brady GP, Sharp KA. Decomposition of interaction free energies in proteins and other complex systems. J Mol Biol 1995; 254: 77–85, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Boresch S, Karplus M. The meaning of component analysis: decomposition of the free energy in terms of specific interactions. J Mol Biol 1995; 254: 801–807, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Murphy KP, Xie D, Garcia KC, Amzel LM, Freire E. Structural energetics of peptide recognition: angiotensin II/antibody binding. Proteins 1993; 15: 113–120, [PUBMED], [INFOTRIEVE]
  • Murphy KP, Xie D, Thompson KS, Amzel LM, Freire E. Entropy in biological binding processes: estimation of translational entropy loss. Proteins 1994; 18: 63–67, [PUBMED], [INFOTRIEVE]
  • Murphy KP, Freire E, Paterson Y. Configurational effects in antibody–antigen interactions studied by microcalorimetry. Proteins 1995; 21: 83–90, [PUBMED], [INFOTRIEVE]
  • Jelesarov I, Bosshard HR. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit 1999; 12: 3–18, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Murphy KP, Bhakuni V, Xie D, Freire E. Molecular basis of cooperativity in protein folding. III. Structural identification of cooperative folding units and folding intermediates. J Mol Biol 1992; 227: 293–306, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Gomez J, Hilser VJ, Xie D, Freire E. The heat capacity of proteins. Proteins 1995; 22: 404–412, [PUBMED], [INFOTRIEVE]
  • Gomez J, Freire E. Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin. J Mol Biol 1995; 252: 337–350, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Murphy KP, Freire E. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem 1992; 43: 313–361, [PUBMED], [INFOTRIEVE]
  • Spolar RS, Livingstone JR, Record MT, Jr. Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry 1992; 31: 3947–3955, [PUBMED], [INFOTRIEVE]
  • Baker BM, Murphy KP. Prediction of binding energetics from structure using empirical parameterization. Method Enzymol 1998; 295: 294–315
  • Luque I, Freire E. Structure-based prediction of binding affinities and molecular design of peptide ligands. Method Enzymol 1998; 295: 100–127
  • Dunitz JD. Win some, lose some: enthalpy–entropy compensation in weak intermolecular interactions. Chem Biol 1995; 2: 709–712, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Gilli P, Ferretti V, Gilli G, Borea PA. Enthalpy–entropy compensation in drug receptor binding. J Phys Chem 1994; 98: 1515–1518
  • Doyle ML. Characterization of binding interactions by isothermal titration calorimetry. Curr Opin Biotechnol 1997; 8: 31–35, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Makhatadze GI, Privalov PL. Contribution of hydration to protein folding thermodynamics I. The enthalpy of hydration. J Mol Biol 1993; 232: 639–659, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Privalov PL, Gill SJ. Stability of protein structure and hydrophobic interaction. Adv Protein Chem 1988; 39: 191–234, [PUBMED], [INFOTRIEVE]
  • Privalov PL, Makhatadze GI. Contribution of hydration to protein folding thermodynamics. II. The entropy and Gibbs energy of hydration. J Mol Biol 1993; 232: 660–679, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Spolar RS, Ha JH, Record MT, Jr. Hydrophobic effect in protein folding and other noncovalent processes involving proteins. Proc Natl Acad Sci USA 1989; 86: 8382–8385, [PUBMED], [INFOTRIEVE]
  • Xie D, Freire E. Molecular basis of cooperativity in protein folding. V. Thermodynamic and structural conditions for the stabilization of compact denatured states. Proteins 1994; 19: 291–301, [PUBMED], [INFOTRIEVE]
  • Janin J, Chothia C. The structure of protein–protein recognition sites. J Biol Chem 1990; 265: 16027–16030, [PUBMED], [INFOTRIEVE]
  • Burrows SD, Doyle ML, Murphy KP, Franklin SG, White JR, Brooks I, McNulty DE, Scott MO, Knutson JR, Porter D, Young PR, Hensley P. Determination of the monomer-dimer equilibrium of interleukin-8 reveals it is a monomer at physiological concentrations. Biochemistry 1994; 33: 12741–12745, [PUBMED], [INFOTRIEVE]
  • Baker BM, Murphy KP. Dissecting the energetics of a protein–protein interaction: the binding of ovomucoid third domain to elastase. J Mol Biol 1997; 268: 557–569, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lee B, Richards FM. The interpretation of protein structures: estimation of static accessibility. J Mol Biol 1971; 55: 379–400, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hubbard SJ, Thornton JM. NACCESS Computer Program. 2.1.1 ed. Department of Biochemisry & Molecular Biology, University College, London 1996
  • Luque I, Freire E. Structural parameterization of the binding enthalpy of small ligands. Proteins 2002; 49: 181–190, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Murphy KP, Gill SJ. Solid model compounds and the thermodynamics of protein unfolding. J Mol Biol 1991; 222: 699–709, [PUBMED], [INFOTRIEVE]
  • Murphy KP, Privalov PL, Gill SJ. Common features of protein unfolding and dissolution of hydrophobic compounds. Science 1990; 247: 559–561, [PUBMED], [INFOTRIEVE]
  • Baldwin RL. Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci USA 1986; 83: 8069–8072, [PUBMED], [INFOTRIEVE]
  • Finkelstein AV, Janin J. The price of lost freedom: entropy of bimolecular complex formation. Protein Eng 1989; 3: 1–3, [PUBMED], [INFOTRIEVE]
  • Tamura A, Privalov PL. The entropy cost of protein association. J Mol Biol 1997; 273: 1048–1060, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Amzel LM. Loss of translational entropy in binding, folding, and catalysis. Proteins 1997; 28: 144–149, [PUBMED], [INFOTRIEVE]
  • Kauzmann W. Some factors in the interpretation of protein denaturation. Adv Protein Chem 1959; 14: 1–63, [PUBMED], [INFOTRIEVE]
  • Gilson MK, Given JA, Bush BL, McCammon JA. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 1997; 72: 1047–1069, [PUBMED], [INFOTRIEVE]
  • Holtzer A. The “cratic correction” and related fallacies. Biopolymers 1995; 35: 595–602, [published erratum appears in biopolymers 1996; 39:753]. [published erratum appears in biopolymers 1996, 39, 753][PUBMED], [INFOTRIEVE], [CROSSREF]
  • Murphy KP, Freire E. Thermodynamic strategies for rational protein and drug design. Pharm Biotechnol 1995; 7: 219–241, [PUBMED], [INFOTRIEVE]
  • Creamer TP, Rose GD. Side-chain entropy opposes alpha-helix formation but rationalizes experimentally determined helix-forming propensities. Proc Natl Acad Sci USA 1992; 89: 5937–5941, [PUBMED], [INFOTRIEVE]
  • Creamer TP, Rose GD. Alpha-helix-forming propensities in peptides and proteins. Proteins 1994; 19: 85–97, [PUBMED], [INFOTRIEVE]
  • D’Aquino JA, Gomez J, Hilser VJ, Lee KH, Amzel LM, Freire E. The magnitude of the backbone conformational entropy change in protein folding. Proteins 1996; 25: 143–156, [CROSSREF]
  • Lee KH, Xie D, Freire E, Amzel LM. Estimation of changes in side chain configurational entropy in binding and folding: general methods and application to helix formation. Proteins 1994; 20: 68–84, [PUBMED], [INFOTRIEVE]
  • Bardi JS, Luque I, Freire E. Structure-based thermodynamic analysis of HIV-1 protease inhibitors. Biochemistry 1997; 36: 6588–6596, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wild K, Bohner T, Aubry A, Folkers G, Schulz GE. The three-dimensional structure of thymidine kinase from Herpes simplex virus type 1. FEBS Lett 1995; 368: 289–292, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wild K, Bohner T, Folkers G, Schulz GE. The structures of thymidine kinase from Herpes simplex virus type 1 in complex with substrates and a substrate analogue. Protein Sci 1997; 6: 2097–2106, [PUBMED], [INFOTRIEVE]
  • Champness JN, Bennett MS, Wien F, Visse R, Summers WC, Herdewijn P, de Clerq E, Ostrowski T, Jarvest RL, Sanderson MR. Exploring the active site of Herpes simplex virus type-1 thymidine kinase by x-ray crystallography of complexes with aciclovir and other ligands. Proteins 1998; 32: 350–361, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Brown DG, Visse R, Sandhu G, Davies A, Rizkallah PJ, Melitz C, Summers WC, Sanderson MR. Crystal structures of the thymidine kinase from Herpes simplex virus type-1 in complex with deoxythymidine and ganciclovir. Nature Struct Biol 1995; 2: 876–881, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bennett MS, Wien F, Champness JN, Batuwangala T, Rutherford T, Summers WC, Sun H, Wright G, Sanderson MR. Structure to 1.9 Å resolution of a complex with Herpes simplex virus type-1 thymidine kinase of a novel, non-substrate inhibitor: X-ray crystallographic comparison with binding of aciclovir. FEBS Lett 1999; 443: 121–125, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Perozzo R, Jelesarov I, Bosshard HR, Folkers G, Scapozza L. Compulsory order of substrate binding to Herpes simplex virus type 1 thymidine kinase. A calorimetric study. J Biol Chem 2000; 275: 16139–16145, [PUBMED], [INFOTRIEVE]
  • Pilger BD, Perozzo R, Alber F, Wurth C, Folkers G, Scapozza L. Substrate diversity of Herpes simplex virus thymidine kinase—impact of the kinematics of the enzyme. J Biol Chem 1999; 274: 31967–31973, [PUBMED], [INFOTRIEVE]
  • Schlauderer GJ, Proba K, Schulz GE. Structure of a mutant adenylate kinase ligated with an ATP-analogue showing domain closure over ATP. J Mol Biol 1996; 256: 223–227, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Muller CW, Schlauderer GJ, Reinstein J, Schulz GE. Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Structure 1996; 4: 147–156, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kaspar S, Perozzo R, Reinelt S, Meyer M, Pfister K, Scapozza L, Bott M. The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor. Mol Microbiol 1999; 33: 858–872, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem 2000; 69: 183–215, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Meyer M. Regulation of the Citrate Fermentation Genes in Klebsiella pneumoniae: Functional Analysis of the Two-Component System CitA/CitB and of the cAMP Receptor Protein. Dissertation, Zurich, 1999
  • Bott M, Meyer M, Dimroth P. Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae. Mol Microbiol 1995; 18: 533–546, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Sillén LG, Martell AE. Stability Constants of Metal-ion Complexes. 2nd ed. The Chemical Society, London 1964
  • Wilson JE, Chin A. Chelation of divalent cations by A.TP, studied by titration calorimetry. Anal Biochem 1991; 193: 16–19, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Remington S, Wiegand G, Huber R. Crystallographic refinement and atomic models of two different forms of citrate synthase at 2.7 and 1.7 Å resolution. J Mol Biol 1982; 158: 111–152, [PUBMED], [INFOTRIEVE]
  • Glusker JP. Structural aspects of citrate biochemistry. Curr Top Cell Regul 1992; 33: 169–184, [PUBMED], [INFOTRIEVE]
  • Russell RJ, Ferguson JM, Hough DW, Danson MJ, Taylor GL. The crystal structure of citrate synthase from the hyperthermophilic Archaeon Pyrococcus furiosus at 1.9 Å resolution. Biochemistry 1997; 36: 9983–9994, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Glusker JP. Citrate conformation and chelation: enzymatic implications. Acc Chem Res 1980; 13: 345–352
  • Gerharz T, Reinelt S, Kaspar S, Scapozza L, Bott M. Identification of basic amino acid residues important for citrate binding by the periplasmic receptor domain of the sensor kinase CitA. Biochemistry 2003; 42: 5917–5924, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Reinelt S, Hofmann E, Gerharz T, Bott M, Madden DR. The structure of the periplasmic ligand-binding domain of the sensor kinase CitA reveals the first extracellular PAS domain. J Biol Chem 2003; 278: 39189–39196, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lin LN, Li J, Brandts JF, Weis RM. The serine receptor of bacterial chemotaxis exhibits half-site saturation for serine binding. Biochemistry 1994; 33: 6564–6570, [PUBMED], [INFOTRIEVE]
  • Evans LJ, Cooper A, Lakey JH. Direct measurement of the association of a protein with a family of membrane receptors. J Mol Biol 1996; 255: 559–563, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Krell T, Renauld-Mongenie G, Nicolai MC, Fraysse S, Chevalier M, Berard Y, Oakhill J, Evans RW, Gorringe A, Lissolo L. Insight into the structure and function of the transferrin receptor from Neisseria meningitidis using microcalorimetric techniques. J Biol Chem 2003; 278: 14712–14722, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hippler-Mreyen S, Klare JP, Wegener AA, Seidel R, Herrmann C, Schmies G, Nagel G, Bamberg E, Engelhard M. Probing the sensory rhodopsin II binding domain of its cognate transducer by calorimetry and electrophysiology. J Mol Biol 2003; 330: 1203–1213, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Spudich JL. Variations on a molecular switch: transport and sensory signalling by archaeal rhodopsins. Mol Microbiol 1998; 28: 1051–1058, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wegener AA, Klare JP, Engelhard M, Steinhoff HJ. Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J 2001; 20: 5312–5319, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Fleming KG. Probing stability of helical transmembrane proteins. Method Enzymol 2000; 323: 63–77
  • Presnell SR. ACCESS Computer Program. 3.1 ed. ZymoGenetics, Seattle 1994

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.