123
Views
13
CrossRef citations to date
0
Altmetric
Research Article

SPHINGOSINE- AND CERAMIDE-ANALOG TOXINS—AN UPDATE

&
Pages 189-246 | Published online: 23 Nov 2000

REFERENCES

  • Carter G. T., Rinehart K. L., Jr. Aplidiasphingosine, an Antimicrobial and Antitumor Terpenoid from an Aplidium sp. (Marine Tunicate). J. Am. Chem. Soc. 1978; 100: 7441–7442
  • Wang E., Norred W. P., Bacon C. W., Riley R. T., Merrill A. H., Jr. Inhibition of Sphingolipid Biosynthesis by Fumonisins. J. Biol. Chem. 1991; 266: 14486–14490
  • Shier W. T. Sphingosine Analogs: An Emerging New Class of Toxins that Includes the Fumonisins. J. Toxicol.-Toxin Rev. 1992; 11: 241–257
  • Hannun Y. A., Bell R. M. Lysophingolipids Inhibit Protein Kinase C: Implications for the Sphingolipidoses. Science 1987; 235: 670–674
  • Hannun Y. A. The Sphingomyelin Cycle and the Second Messenger Function of Ceramide. J. Biol. Chem. 1994; 269: 3125–3128
  • Hannun Y. A., Linardic C. M. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochimica et Biophysica Acta 1993; 1154: 223–236
  • Perry D. K., Hannun Y. A. The role of ceramide in cell signaling. Biochemica et Biophysica Acta 1998; 1436: 233–243
  • Hannun Y. A., Luberto C. C. Ceramide in the Eukaryotic Stress Response. Cell Biol. 2000; 10: 73–80
  • Kobayashi J., Ishibashi M. Sphingosine-Related Marine Alkaloids: Cyclic Amino Alcohols. Heterocycles 1996; 42: 943–970
  • Ueno Y., Sugiura Y., Iijima K., Kawamura S. Natural Toxin Series: (2) A Sphingosine-like Mycotoxin, Fumonisin. Journal of Toxicological Sciences 1996; 21: 27–39
  • Harvey A. L. Cytolytic Toxins, in. Handbook of Toxinology, W. T. Shier, D. Mebs. Marcel Dekker, Inc., New York 1990; 1–66
  • Rosenberg P. Phospholipases, in. Handbook of Toxinology, W. T. Shier, D. Mebs. Marcel Dekker, Inc., New York 1990; 67–277
  • Forrester L. J., Barrett L. T., Campbell B. J. Red Blood Cell Lysis Induced by the Venom of the Brown Recluse Spider: The Role of Sphingomyolinase D. Arch. Biochem. Biophys. 1978; 187: 335
  • Shier W. T. Cytolytic Mechanisms: Self-destruction of Mammalian Cells by Activation of Endogenous Hydrolytic Enzymes. Toxicol.-Toxin Reviews 1982; 1: 1–32
  • Hannun Y. A., Loomis C. R., Merrill A. H., Jr., Bell R. M. Sphingosine Inhibition of Protein Kinase C Activity and of Phorbol Dibutyrate Binding in Vitro and in Human Platelets. J. Biol. Chem. 1986; 261: 12604–12609
  • Hannun Y. A., Bell R. M. The Sphingomyelin Cycle: A Prototypic Sphingolipid Signaling Pathway. Advances Lipid Res. 1993; 25: 27–41
  • Obeid L. M., Linardic C. M., Karolak L. A., Hannun Y. A. Programmed Cell Death Induced by Ceramide. Science 1993; 259: 1769–1771
  • Hannun Y. A., Obeid L. M. Ceramide: an intracellular signal for apoptosis. TIBS 1995; 20: 73–77
  • Luberto C., Hannun Y. A. Sphingolipid Metabolism in the Regulation of Bioactive Molecules. Lipids 1999; 34: S5–S10
  • Merrill A. H., Jr., Hannun Y. A., Bell R. M. Introduction: Sphingolipids and Their Metabolites in Cell Regulation. Advances Lipid Res. 1993; 25: 1–24
  • Hannun Y. A., Obeid L. M., Wolff R. A. The Novel Second Messenger Ceramide: Identification, Mechanism of Action, and Cellular Activity. Advances Lipid Res. 1993; 25: 43–64
  • Spiegel S., Milstien S. Sphingolipid metabolites: Members of a new class of lipid second messengers. J. Membr. Biol. 1995; 146: 225–237
  • Hakomori S-I. Sphingolipid-Dependent Protein Kinases. Advances in Pharmacology 1997; 36: 155–171
  • Hakomori S-I., Yamamura S., Handa K. Signal Transduction Through Glyco(sphingo)lipids. Ann. New York Acad. Sci. 1998; 845: 1–10
  • Hakomori S-I. Tumor Malignancy Defined by Aberrant Glycosylation and Sphingo(glyco)lipid Metabolism. Perspectives Cancer Res. 1996; 56: 5309–5318
  • Hakomori S-I. Cancer-Associated Glycosphingolipid Antigens: Their Structure, Organization, and Function. Acta Anat. 1998; 161: 79–90
  • Merrill A. H., Jones D. D. An update of the enzymology and regulation of sphingomyelin metabolism. Biochimica et Biophysica Acta 1990; 1044: 1–12
  • Merrill A. H., Schmelz E-M., Dillehay D. L., Spiegel S., Shayman J. A., Schroeder J. J., Riley R. T., Voss K. A., Wang E. Sphingolipids—The Enigmatic Lipid Class: Biochemistry, Physiology and Pathophysiology. Toxicol. Appl. Pharmacol. 1997; 142: 208–225
  • Megidish T., Takio K., Titani K., Iwabuchi K., Hamaguchi A., Igarashi Y., Hakomori S-I. Endogenous Substrates of Sphingosine-Dependent Kinases (SDKs) Are Chaperone Proteins: Heat Shock Proteins, Glucose-Regulated Proteins, Protein Disulfide Isomerase, and Calreticulin. Biochem. 1999; 38: 3369–3378
  • Bornfeldt K. E., Graves L. M., Raines E. W., Igarashi Y., Wayman G., Yamamura S., Yatomi Y., Sidhu J. S., Krebs E. G., Hakomori S., Ross R. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: Spatial and temporal modulation of PDGF chemotactic signal transduction. J. Cell Biol. 1995; 130: 193–206
  • Merrill A. H., Sereni A. M., Stevens V. L., Hannun Y. A., Bell R. M., Kinkade J. M., Jr. Inhibition of Phorbol Ester-dependent Differentiation of Human Promyelocytic Leukemic (HL-60) Cells by Sphinganine and Other Long-chain Bases. J. Biol. Chem. 1986; 261: 12610–12615
  • Nelson D. H., Murray D. K. Sphingolipids Inhibit Insulin and Phorbol Ester Stimulated Uptake of 2-Deoxyglucose. Biochem. Biophys. Res. Comm. 1986; 138: 463–467
  • Hall F. L., Fernyhough P., Ishii D. N., Vuliet P. R. Suppression of Nerve Growth Factor-directed Neurite Outgrowth in PC12 Cells by Sphingosine, an Inhibitor of Protein Kinase C. J. Biol. Chem. 1988; 263: 4460–4466
  • Igarashi Y., Sadahira Y., Yamamura S., Hakomori S. Inhibition of Mouse B16 Melanoma Cell Motility by Sphingosine-1-Phosphate Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, K. V. Honn. Plenum Press, New York 1997; 693–698
  • Olivera A., Spiegel S. Sphingosine-1-phosphate as a Second Messenger in Cell Proliferation Induced by PDGF and FCS Mitogens. Nature 1993; 365: 557–560
  • Ghosh T. K., Bian J., Gill D. L. Intracellular Calcium Release Mediated by Sphingosine Derivatives Generated in Cells. Science 1990; 248: 1653–1656
  • Ghosh T. K., Bian J., Gill D. L. Sphingosine 1-phosphate Generated in the Endoplasmic Reticulum Membrane Activates Release of Stored Calcium. J. Biol. Chem. 1994; 269: 22628–22635
  • Zhang H., Desai N. N., Murphey J. M., Spiegel S. Increases in Phosphatidic Acid Levels Accompany Sphingosine-stimulated Proliferation of Quiescent Swiss 3T3 Cells. J. Biol. Chem. 1990; 265: 21309–21316
  • Lavie Y., Piterman O., Lisovitch M. Inhibition of Phosphatidic Acid Phosphohydrolase Activity by Sphingosine. Dual Action of Sphingosine in Diacylglycerol Signal Termination. Fed. Eur. Biol. Soc. 1990; 277: 7–10
  • Wu J., Spiegel S., Stugill T. W. Sphingosine-1-phosphate Rapidly Activates the MAP Kinase Pathway by a G-protein Dependent Mechanism. J. Biol. Chem. 1995; 270: 11484–11488
  • Igarashi Y., Hakomori S. Enzymatic Synthesis of N,N-Dimethyl-sphingosine: Demonstration of the Sphingosine:N-methyltransferase in Mouse Brain. Biochem. Biophys. Res. Commun. 1989; 164: 1411–1416
  • Igarashi Y., Kitamura K., Toyokuni T., Dean B., Fenderson B. A., Ogawa T., Hakomori S. A Specific Enhancing Effect of N,N-Dimethylsphingosine on Epidermal Growth Factor Receptor Autophosphorylation: Demonstration of its Endogenous Occurrence (and the Virtual Absence of Unsubstituted Sphingosine) in Human Epidermoid Carcinoma A431 Cells. J. Biol. Chem. 1990; 265: 5385–5389
  • Okazaki T., Bell R. M., Hannun Y. A. Sphingomyelin Turnover Induced by Vitamin D3 in HL-60 Cells. Role in Cell Differentiation. J. Biol. Chem. 1989; 264: 19076–19080
  • Olivera A., Spiegel S. Sphingomyelinase and Cell-permeable Ceramide Analogs Stimulate Cellular Proliferation in Quiescent Swiss 3T3 Fibroblasts. J. Biol. Chem. 1992; 267: 26121–26127
  • Chang Y., Abe A., Shayman J. A. Ceramide formation during heat shock: A potential mediator of αB-crystallin transcription. Proc. Natl. Acad. Sci. USA 1995; 92: 12275–12279
  • Raines M. A., Kolesnick R. N., Golde D. W. Sphingomyelinase and Ceramide Activate Mitogen-Activated Protein Kinase in Myeloid HL-60 Cells. J. Biol. Chem. 1993; 268: 14572–14575
  • Dobrowsky R. T., Hannun Y. A. Ceramide Stimulates a Cytosolic Protein Phosphatase. J. Biol. Chem. 1992; 267: 5048–5051
  • Schutze S., Potthoff K., Machleidt T., Berkovic D., Wiegmann D., Kronke M. TNF activates NF-κB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 1992; 71: 765–776
  • Inokuchi L., Mason I., Radin N. S. Antitumor activity via inhibition of glycosphingolipid biosynthesis. Cancer Lett. 1987; 38: 23–30
  • Shayman J. A., Deshmukh G. D., Mahdiyoun S., Thomas T. P., Barcelon F. S., Radin N. S. Modulation of Renal Epithelial Cell Growth by Glucosylceramide: Association with Protein Kinase C, Sphingosine, and Diacylglyceride. J. Biol. Chem. 1991; 266: 22968–22974
  • Yang H.-J., Hakomori S.-I. A Sphingolipid Having a Novel Type of Ceramide and Lacto-N-fucopentanose III. J. Biol. Chem., 246: 1192–1200
  • Nudelman E. D., Kannagi R., Hakomori S.-I., Parsons M., Lipinski M., Wiels J., Fellous M., Turz T. A Glycolipid Antigen Associated with Burkitt Lymphoma Defined by a Monoclonal Antibody. Science 1983; 220: 509–511
  • Hakomori S. I., Wang S.-M., Young W. W.J. Isoantigenic Expression of Forssman Glycolipid in Human Gastric and Colonic Mucosa: Its Possible Identity with “A-like Antigen” in Human Cancer. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 3023–3027
  • Danishefsky S. J., Allen J. R. From the Laboratory to the Clinic: A Retrospective on Fully Synthetic Carbohydrate-Based Anticancer Vaccines. Angew. Chem. Int. Ed. 2000; 39: 836–863
  • Shier W. T. Preparation of a Chemical Vaccine Against Tumor Progression. Proc. Nat. Acad. Sci. USA 1971; 68: 2078–2082
  • Shier W. T. Modification of Tumor Growth with a Defined Glycoprotein Antigen. Nature 1973; 244: 99–101
  • Iwabuchi K., Handa K., Hakomori S-I. Separation of “Glycosphingolipid Signaling Domain” from Caveolin-containing Membrane Fraction in Mouse Melanoma B16 Cells and Its Role in Cell Adhesion Coupled with Signaling. J. Biol. Chem. 1998; 273: 33766–33773
  • Sandvig K., Garred O., van Helvoort A., van Meer G., van Deurs B. Importance of Glycolipid Synthesis for Butyric Acid-induced Sensitization to Shiga Toxin and Intracellular Sorting of Toxin in A431 Cells. Mol. Biol. Cell 1996; 7: 1391–1404
  • Yoshida T., Chen C., Zhang M., Wu H. C. Disruption of the Golgi Apparatus by Brefeldin A Inhibits the Cytotoxicity of Ricin, Modeccin and Pseudomonas Toxin. Exp. Cell Res. 1991; 192: 389–395
  • Sandvig K., Dubinina E., Garred O., Prydz K., Kozlov J. V., Hansen S. H., van Deurs B. Protein Toxins: Mode of Action and Cell Entry. Biochem. Soc. Tran. 1992; 20: 724–727
  • Merrill A. Characterization of Serine Palmitoyltransferase Activity in Chinese Hamster Ovary Cells. Biochim. Biophys. Acta 1983; 754: 284
  • Merrill A. H., Jr., Wang E., Gilchrist D. G., Riley R. T. Fumonisins and Other Inhibitors of De Novo Sphingolipid Biosynthesis. In. Advances in Lipid Research: Sphingolipids and Their Metabolites, R. M. Bell, Y. A. Hannun, A. H. Merrill. Academic Press, San Diego 1993; 26: 215–234
  • Medlock K. A., Merrill A. H., Jr. Inhibition of Serine Palmitoyltransferase In Vitro and Long-chain Base Biosynthesis in Intact Chinese Hamster Ovary Cells by beta-Chloroalanine. Biochemistry 1988; 27: 7079–7084
  • Zweerink M. M., Edison A. M., Wells G. B., Pinto W., Lester R. L. Characterization of a Novel, Potent, and Specific Inhibitor of Serine Palmitoyltransferase. J. Biol. Chem. 1992; 267: 25032–25038
  • Miyake Y., Kozutsumi Y., Nakamura S., Fujita T., Kawasaki T. Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem. Biosphys. Res. Commun. 1995; 211: 396–403
  • Mandala S. M., Frommer B. R., Thornton R. A., Kurtz M. B., Young N. M., Cabello M. A., Genilloud O., Liesch J. M., Smith J. L., Horn W. S. Inhibition of serine palmitoyltransferase activity by lipoxamycin. J. Antibiot. (Japan) 1995; 47: 349–356
  • Wang E., Norred W. P., Bacon C. W., Riley R. T., Merrill A. H., Jr. Inhibition of Sphingolipid Biosynthesis by Fumonisins. J. Biol. Chem. 1991; 266: 14486–14490
  • Wang E., Ross P. F., Wilson T. M., Riley R. T., Merrill A. H., Jr. Alteration of serum sphingolipids upon dietary exposure of ponies to fumonisins, mycotoxins produced by Fusarium moniliforme. J. Nutr. 1992; 122: 1706–1716
  • Yoo H.-S., Norred W. P., Wang E., Merrill A. H., Jr., Riley R. T. Fumonisin Inhibition of De Novo Sphingolipid Biosynthesis and Cytotoxicity are Correlated in LLC-PK1 Cells. Toxicol. Appl. Pharmacol. 1992; 114: 9–15
  • Riley R. T., An N. H., Showker J. L., Yoo H.-S., Norred W. P., Chamberlain W. J., Wang E., Merrill A. H., Jr., Motelin G., Beasley V. R., Haschek W. M. Alteration of tissue and serum sphinganine to sphingosine ratio: An early biomarker of exposure to fumonisin-containing feeds in pigs. Toxicol. Appl. Pharmacol. 1993; 118: 105–112
  • Riley R. T., Hinton D. M., Chamberlain W. J., Bacon C. W., Wang E., Merrill A. H., Jr., Voss K. A. Dietary fumonisin B1 induces disruption of sphingolipid metabolism in Sprague-Dawley rats: A new mechanism of nephrotoxicity. J. Nutr. 1994; 124: 594–603
  • Abbas H. K., Tanaka T., Duke S. O., Porter J. K., Wray E. M., Hodges L., Sessions A. E., Wang E., Merrill A. H., Jr., Riley R. T. Fumonisin and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol. 1994; 106: 1085–1093
  • Yoo H-S., Norred W. P., Showker J., Riley R. T. Elevated Sphingoid Bases and Complex Sphingolipid Depletion as Contributing Factors in Fumonisin-Induced Cytotoxicity. Toxicology and Applied Pharmacology 1996; 138: 211–218
  • Humpf H.-U., Schmelz E.-M., Meredith F. I., Merrill A. H. N-Palmitoyl-HFB1: A New Metabolite of Hydrolyzed Fumonisin (HFB1) in Rat Liver Microsomes. Revue Méd. Vét. 1998; 149: 576
  • Humpf H. U., Schmelz E. M., Meredith F. I., Vesper H., Vales T. R., Wang E., Menaldino D. S., Liotta D. C., Merrill A. H., Jr. Acylation of Naturally Occurring and Synthetic 1-Deoxysphinganines by Ceramide Synthase. Formation of N-palmitoyl-aminopentol Produces a Toxic Metabolilte of Hydrolyzed Fumonisin, AP1, and a New Category of Ceramide Synthase Inhibitor. J. Biol. Chem. 1998; 273: 19060–19064
  • Mandala S. M., Thornton R. A., Frommer B. R., Curotto J. E., Rozdilsky W., Kurtz M. B., Giacobbe R. A., Bills G. F., Cabello M. A., Martin I., Pelaez F., Harris G. H. The discovery of auastralifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporomiella australis producing organism, fermentation, isolation, and biological activity. J. Antibiot. (Japan) 1995; 48: 349–356
  • Barbour S., Edidin M., Felding-Habermann B., Taylor-Norton J., Radin N. S., Fenderson B. A. Glycolipid Depletion Using A Ceramide Analog (PDMP) Alters Growth, Adhesion, and Membrane Lipid Organization in Human A431 Cells. J. Cell. Phys. 1992; 150: 610–619
  • Kedderis L. B., Bozigian H. P., Kleeman J. M., Hall R. L., Palmer T. E., Harrison S. D., Jr., Susick R. L., Jr. Toxicity of the Protein C Inhibitor Safingol Administered Alone and in Combination with Chemotherapeutic Agents. Fundamental and Applied Toxicology 1995; 25: 210–217
  • Bielawska A., Greenberg M. S., Perry D., Jayadev S., Shayman J. A., McKay C., Hannun Y. A. (IS, 2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase. J. Biol. Chem. 1996; 271: 12646–12654
  • Gulavita N. K., Scheuer P. J. Two Epimeric Aliphatic Amino Alcohols from a Sponge, Xestospongia sp. J. Org. Chem. 1989; 54: 366–369
  • Jimenez C., Crews P. Novel Marine Sponge Amino Acids, 10. Xestoaminols from Xestospongia sp. J. of Nat. Products 1990; 53: 978–982
  • Mori K., Matsuda H. Synthesis and Absolute Configuration of the Two Epimeric Aliphatic Amino Alcohols [(5E, 7E)-2-Amino-5,7-tetradecadien-3-ols] Isolated from a Sponge Xestospongia sp. Liebigs. Ann. Chem. 1992; 1992: 131–137
  • Merriman G., Tegeler J. J., Hamer R. R.L., Rauckman B. S., Freed B. S., Kurtz E. S., Bailey S. C., Ortega-Nanos M., Przekop P. A., Hellyer L. The Enantioselective Synthesis and Antiinflammatory Activity of Novel Aryl-Sphingolipid PKC Inhibitors. Bioorg. and Med. Chem. Lett. 1995; 5: 2483–2488
  • Jares-Erijman E., Bapat C. P., Lithgow-Bertelloni A., Rinehart K. L., Sakai R. Crucigasterins, New Polyunsaturated Amino Alcohols from the Mediterranean Tunicate Pseudodistoma crucigaster. J. Org. Chem. 1993; 58: 5732–5737
  • Whaley H. A. The Structure of Lipoxamycin, a Novel Antifungal Antibiotic. J. Amer. Chem. Soc. 1971; 93: 3767–3769
  • Ishibashi M., Ohizumi Y., Sasaki T., Nakamura H., Hirata Y., Kobayashi J. Pseudodistomins A and B, Novel Antineoplastic Piperidine Alkaloids with Calmodulin Antagonistic Activity from the Okinawan Tunicate. Pseudodistoma kanoko, J. Org. Chem. 1987; 52: 450–453
  • Kiguchi T., Yuumoto Y., Ninomiya I., Naito T., Deki K., Ishibashi M., Kobayashi J. Pseudodistomin B: Revised Structure and First Total Synthesis. Tetrahedron Lett. 1992; 33: 7389–7390
  • Kobayashi J., Naitoh K., Doi Y., Deki K., Ishibashi M. Pseudodistomin C, a New Piperidine Alkaloid with Unusual Absolute Configuration from the Okinawan Tunicate. Pseudodistoma kanoko, J. Org. Chem. 1995; 60: 6941–6945
  • Doi Y., Ishibashi M., Kobayashi J. Total Synthesis of Pseudodistomin C, a Sphingosine-Related Piperidine Alkaloid from Tunicate. Pseudodistoma kanoko, Tetrahedron 1996; 52: 4573–4580
  • Kobayashi J., Cheng J., Ishibashi M., Wachli M., Yamamura S., Ohizumi Y. Penaresidin A and B, Two Novel Azetidine Alkaloids with Potent Actomyosin ATPase-Activating Activity from the Okinawan Marine Sponge Penares sp. J. Chem. Soc. Perkin Trans. 1991; 1135–1137
  • Bezuidenhout S. C., Gelderblom W. C. A., Gorst-Allman C. P., Horak R. M., Marasas W. F. O., Spiteller G., Vleggaar R. Structure Elucidation of the Fumonisins, Mycotoxins from. Fusarium moniliforme, J. Chem. Soc. Chem. Commun. 1988; 1988: 743–745
  • Knapp S., Dong Y. Stereoselective Synthesis of Penaresidin A and Related Azetidine Alkaloids. Tetrahedron Lett. 1997; 38: 3813–3816
  • Alvi K. A., Jaspars M., Crews P. Penazetidine A, an Alkaloid Inhibitor of Protein Kinase C. Bioorg. and Med. Chem. Lett. 1994; 4: 2447–2450
  • Raub M., Cardellina J. H. II. Clavepictines A and B: Cytotoxic Quinolizidines from the Tunicate. Clavelina picta, J. Am. Chem. Soc. 1991; 113: 3178–3180
  • Kong F., Faulkner D. J., Pictamine A. Quinolizidine Alkaloid from the Tunicate. Clavelina picta, Tetrahedron Lett. 1991; 32: 3667–3668
  • Steffan B., Lepadin A. A Decahydroquinoline Alkaloid from the Tunicate. Clavelina lepadiformis, Tetrahedron 1991; 47: 8729–8732
  • Kluepfel D., Bagli J., Baker H., Charest M-P., Kudelski A., Sehgal S. N., Vezina C. Myriocin, A New Antifungal Antibiotic from. Myriococcum albomyces, J. Antibiotics 1972; 25: 109–115
  • Bagli J. F., Kluepfel D., Jacques M., St. Elucidation of Structure and Stereochemistry of Myriocin. A Novel Antifungal Antibiotic. J. Org. Chem. 1973; 38: 1253–1260
  • Aragozzini F., Manachini P. L., Craveri R., Rindone B., Scolastico C. Isolation and Structure Determination of a New Antifungal α-hydroxymethyl-α-amino Acid. Tetrahedron 1972; 28: 5493–5498
  • Destro R., Colombo A. Crystal Structure and Relative Configuration of the N-Acetyl-γ-lactone of the Antifungal Antibiotic Thermozymocidin. J. C. S. Perkin II 1978; 896–899
  • Fujita T., Inoue K., Yamamoto S., Ikumoto T., Sasaki S., Toyama R., Chiba K., Hoshino Y., Okumoto T. Fungal Metabolites. Part 11. A Potent Immunosuppressive Activity Found in Isaria sinclairii Metabolite. J. Antibiotics 1994; 208–215
  • Sasaki S., Hashimoto R., Kiuchi M., Inoue K., Ikumoto T., Hirose R., Chiba K., Hoshino Y., Okumoto T., Fujita T. Fungal Metabolites. Part 14. Novel Potent Immunosuppressants, Mycesterincins, Produced by. Mycelia sterilia, J. Antibiotics 1994; 420–433
  • Banfi L., Beretta M. G., Colombo L., Gennari C., Scolastico C. Total Synthesis of (+)-Thermozymocidin (Myriocin) from D-Fructose. J. Chem. Soc., Chem. Commun. 1982; 488–490
  • Banfi L., Beretta M. G., Colombo L., Gennari C., Scolastico C. 2-Benzoylamino-2-deoxy-2-hydroxymethyl-D-hexono-1,4-lactones: Synthesis from D-Fructose and Utilization in the Total Synthesis of Thermozymocidin (Myriocin). J. Chem. Soc. Perkin Trans. I. 1983; 1613–1619
  • Trost B. M., Lee C. B. A New Strategy for the Synthesis of Sphingosine Analogues. Sphingofungin F. J. Am. Chem. Soc. 1998; 120: 6818–6819
  • Fujita T., Inoue K., Yamamoto S., Ikumoto T., Sasaki S., Toyama R., Yoneta M., Chiba K., Hoshino Y., Okumoto T. Fungal Metabolites, Part 12. Potent Immunosuppressant, 14-deoxomyriocin, (2S, 3R, 4R)-(E)-2-amino-3,4-dihydroxy-2-hydroxymethyleicos-6-enoic acid and structure-activity relationships of myriocin derivatives. J. Antibiotics 1994; 216–224
  • Mukhopadhyay T., Roy K., Coutinho L., Rupp R. H., Ganguli B. N. Fumifungin, A New Antifungal Antibiotic from Aspergillus fumigatus fresenius 1863. J. Antibiotics 1987; 1050–1052
  • VanMiddlesworth F., Ciacobbe R. A., Lopez M., Garrity G., Bland J. A., Bartizal K., Fromtling R. A., Polishook J., Zweerink M., Edison A. M., Rozdilsky W., Wilson K. E., Monaghan R. L. Spingofungins A, B, C, and D; A New Family of Antifungal Agents. J. Antibiotics 1992; 45: 861–867
  • VanMiddlesworth F., Dufresne C., Wincott F. E., Mosley R. T., Wilson K. E. Determination of the Relative and Absolute Stereochemistry of Sphingofungins A, B, C, and D. Tetrahedron Lett. 1992; 33: 297–300
  • Horn W. S., Smith J. L., Bills G. F., Raghoobar S. L., Helms G. L., Kurtz M. B., Marrinan J. A., Frommer B. R., Thornton R. A., Mandala S. M. Sphingofungins E and F: Novel Serinepalmitoyl Transferase Inhibitors from. Paecilomyces variotii, J. Antibiotics 1992; 1693–1696
  • Bottini A. T., Gilchrist D. G., Phytotoxins I. A 1-Aminodimethyl-heptadecapentol from Alternaria alternata f. sp. Lycopersici, Tetrahedron Lett. 1981; 22: 2719–2722
  • Bottini A. T., Bowen J. R., Gilchrist D. G., Phytotoxins, II. Characterization of a Phytotoxic Fraction from Alternaria alternata f. sp. Lycopersici, Tetrahedron Lett. 1981; 22: 2723–2726
  • Gelderblom W. C. A., Jaskiewicz K., Marasas W. F.O., Theil P. G., Horak R. M., Vleggaar R., Kreik N. P. J. Fumonisins—Novel Mycotoxins with Cancer-promoting Activity Produced by. Fusarium moniliforme, Appl. Environ. Microbiol. 1988; 54: 1806–1811
  • Abbas H. K., Duke S. O., Merrill A. H., Jr., Wang E., Shier W. T. Phytotoxicity of australifungin, AAL-toxins and fumonisin B1 to. Lemna pausicostata. Phytochemistry 1998; 47: 1509–1514
  • Abbas H. K., Tanaka T., Shier W. T. Biological activities of synthetic analogs of Alternaria alternata toxin (AAL-toxin) and fumonisin in plant and mammalian cell cultures. Phytochemistry 1998; 40: 1681–1689
  • Tatematsu M., Shirai T., Tsuda H., Miyata Y., Shinohara Y., Ito N. Rapid production of hyperplastic nodules in rats treated with carcinogenic chemicals: A new approach for an in vivo short-term screening test for hepatocarcinogens. Gann 1997; 68: 499–507
  • Marasas W. F.O. Fumonisins: History, World-wide Occurrence and Impact. Adv. Expt. Med. Biol. 1996; 392: 1–17
  • Marasas W. F.O., Jaskiewicz K., Venter F. S., Van Schalkwyk D. J. Fusarium moniliforme Contamination of Maize in Oesophageal Cancer Areas in Transkei. S. Afr. Med. J. 1988; 74: 110–114
  • Plattner R. D. Detection of Fumonisins Produced in Fusarium moniliforme Cultures by HPLC with Electrospray MS and Evaporative Light Scattering Detectors. Nat. Toxins 1995; 3: 294–298
  • Seo J-A., Kim J-C., Lee Y-W. Isolation and Characterization of Two New Type C Fumonisins Produced by. Fusarium oxysporum, J. Nat. Prod. 1996; 59: 1003–1005
  • Musser S. M., Gay M. L., Mazzola E. P. Identification of a New Series of Fumonisins Containing 3-Hydroxypyridine. J. Nat. Prod. 1996; 59: 970–972
  • Pachmayr O., Ledl F., Severin T. Bildung von 1-Alkyl-3-oxypyridiniumbetain aus Zuckern. Z. Lebensm. Unters. Forsch 1986; 182: 294–297
  • Shier T. W., Tiefel A. P., Abbas K. H. Current Research on Mycotoxins: Fumonisins, in. Natural and Selected Synthetic Toxins: Biological Implications American Chemical Society Symposium Series, A. T. Tu, W. Gaffield. Oxford University Press, Oxford, U.K. 1999; 745: 54–66
  • Riley T. R., Norred W. P., Bacon W. C. Fungal Toxins in Food: Recent Concerns. Annu. Rev. Nutr. 1993; 13: 167–189
  • Pittet A. Natural Occurrence of Mycotoxins in Foods and Feeds—an Updated Review. Revue Méd. Vét. 1998; 149: 479–492
  • Kellerman T S, Marasas W FO. Thiel PG, Gelderblom WCA, Cawood ME, Coetzer JAW. Leukoencephalomalacia in tow horses induced by oral dosing of fumonisin B1. Onderstopoort J. Vet. Res. 1990; 57: 269–275
  • Harrison L R, Colvin B M, Greene J T, Newman L E, Cole J R. Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. J. Vet. Diagn. Invest. 1990; 2: 217–221
  • Gelderblom W CA, Kriek N PJ, Marasas W FO, Thiel P G. Toxicity and carcinogenicity of the Fusarium moniliforme metabolite, fumonisin B1, in rats. Carcinogenesis 1991; 12: 1247–1251
  • Abbas K. H., Smeda R. J., Gerwick B. C., Shier W. T. Fumonisin B1 from the fungus Fusarium moniliforme causes contact toxicity in plants: Evidence from studies with biosynthetically labeled toxin. J. Nat. Toxins 1999; 8: 405–420
  • Shier T. W., Abbas K. H., Mirocha J. C. Toxicity of the Mycotoxins Fumonisins B1 and B2 and Alternaria alternata f. sp. lycopersici Toxin (AAL) in Cultured Mammalian Cells. Mycopathologica 1991; 116: 97–104
  • Wattenberg E. V., Badria F. A., Shier W. T. Activation of Mitogen-activated Protein Kinase by the Carcinogenic Mycotoxin Fumonisin B1. Biochem. Biophys. Res. Commun. 1996; 227: 622–627
  • Pinelli E., Pipy B., Castegnaro M., Miller D. J., Pfohl-Leszkowicz A. Fumonisin B1 Stimulates Arachidonic Acid Cascade by Activation of Mitogen-activated Protein Kinase. Revue Méd. Vét. 1998; 149: 651
  • Pinelli E., Poux N., Garren L., Pipy B., Castegnaro M., Miller D. J., Pfohl-Leszkowicz A. Activation of Mitogen-activated Protein Kinase by Fumonisin B1 Stimulates cPLA2 Phosphorylation, the Arachidonic Acid Cascade and cAMP Production. Carcinogenesis 1999; 20: 1683–1688
  • Yeung J. M., Wang H-Y., Prelusky D. B. Fumonisin B1 Induces Protein Kinase C Translocation via Direct Interaction with Diacylglycerol Binding Site. Toxicol. Appl. Pharmacol. 1996; 141: 178–184
  • Musser S. M., Eppley R. M., Mazzola E. P., Hadden C. E., Shockcor J. P., Crouch R. C., Martin G. E. Identification of An N-Acetyl Keto Derivative of Fumonisin B1 in Corn Cultures of Fusarium proliferatum. J. Nat. Prod. 1995; 58: 1392–1397
  • Abbas H. K., Cartwright R. D., Shier W. T., Abouzied M. M., Bird C. B., Rice L. G., Ross P. F., Sciumbato G. L., Meredith F. I. Natural Occurrence of Fumonisins in Rice with Fusarium Sheath Rot Disease. Plant Disease 1998; 82: 22–25
  • Hopmans E. C., Murphy P. A. Detection of Fumonisins B1, B2, and B3 and Hydrolyzed Fumonisin B1 in Corn-containing Foods. J. Agric. Food Chem. 1993; 41: 1655–1658
  • Hendrich S., Miller K. A., Wilson T. M., Murphy P. A. Toxicity of Fusarium proliferatum-fermented Nixtamalized Corn-based Diets Fed to Rats: Effect of Nutritional Status. J. Agric. Food Chem. 1993; 41: 1649–1654
  • Stack M. E. Analysis of Fumonisin B1 and Its Hydrolysis Product in Tortillas. J. AOAC Intl. 1998; 81: 737–740
  • Shier W. T. The fumonisin paradox: A review of research on oral bioavailability of fumonisin B1, a mycotoxin produced by Fusarium moniliforme. J. Toxicol.-Toxin Rev. 2000; 19: 161–187
  • Makarieva T. N., Denisenko V. A., Stonik V. A., Milgrom Yu. M., Rashkes Ya. V. Rhizochalin, A Novel Secondary Metabolite of Mixed Biosynthesis from the Sponge Rhizochalina incrustata. Tetrahedron Lett. 1989; 30: 6581–6584
  • Kong F., Faulkner D. J. Leucettamols A and B, Two Antimicrobial Lipids from the Calcareous Sponge Leucetta microraphis. J. Org. Chem. 1993; 58: 970–971
  • Willis R. H., DeVries D. J. BRS1, A C30 Bis-amino, Bis-hydroxy Polyunsaturated Lipid from an Australian Calcareous Sponge that Inhibits Protein Kinase C. Toxicon 1997; 35: 1125–1129
  • Grode S., Cardellina J. H. Ceramides from the Sponge. Dysidea etheria, Lipids 1983; 18: 889–893
  • Chebaane K., Guyout M. Occurrence of Erythro-doccosasphinga-4, 8-dienine, as an Ester. Anemonia Sulcata, Tetrahedron Lett. 1986; 27: 1495–1496
  • Kobayashi J., Ishibashi M., Nakamura H., Hirata Y., Yamasu T., Sasaki T., Ohizumi Y. Symbioramide, a novel Ca2+-ATPase activator from the cultured dinoflagellate Symbiodinium sp. Experientia 1988; 44: 800–802
  • Nakagawa M., Yoshida J., Hino T. First Total Synthesis of Symbioramide, a Novel Ca2+-ATPase Activator from Symbiodinium sp. Chem. Lett. 1990; 1407–1410
  • Yoshida J., Nakagawa M., Seki H., Hino T. Total Synthesis of Symbioramide, a Novel Ca2+-ATPase Activator from Symbiodinium sp. J. Chem. Soc. Perkin Trans. I. 1992; 1407–1410
  • Hirsch S., Kashman Y. New Glycosphingolipids from Marine Organisms. Tetrahedron 1989; 45: 3897–3906
  • Garg H. S., Agrawal S. A Novel Sphingosine Derivative from the Sponge Spirastrella inconstans. J. of Natural Products 1995; 58: 442–445
  • Bano S., Uddin S., Ahmad U. V. An Acetylated Derivative of a New N-Acylsphingosine from Red Alga. Halymenia porphyroides, Planta Medica 1990; 56: 233–234
  • Rao Bheemasankara Ch., Satyanarayana Ch. A new sphingosine derivative from the red alga Halymenia durivilliae of Andaman and Nicobar Islands. Indian J. of Chem. 1994; 33B: 97–98
  • Garg H. S., Sharma M., Bhakuni D. S. An Antiviral Sphingosine Derivative from the Green Alga. Ulva Fasciata, Tetrahedron Lett. 1992; 33: 1641–1644
  • Anjaneyulu V., Rao Subba P.V., Radhika P. A New Sphingosine Derivative and a Polyhydroxy Steroidal Glycoside from Sinularia gravis Tixier-Durivault of the Andaman and Nicobar Islands. Indian J. of Chem. 1999; 38B: 357–360
  • Anjaneyulu V., Radhika P. Two New Sphingosine Derivatives from Sinularia crassa Tixier-Durivault of the Andaman and Nicobar Islands. Indian J. of Chem. 1999; 38B: 457–460
  • Hoye T. R., Ayyad S-E. N., El Sayed K., Hashish N., Shier W. T. personal communication
  • Smirnova G. P., Kochetkov N. K. A Novel Sialoglycolipid from Hepatopancreas of the Starfish. Patiria pectinifera, Biochimica et Biophysica Acta 1980; 618: 486–495
  • Kawano Y., Higuchi R., Isobe R., Komori T. Isolation and Structure of Six New Cerebrosides. Liebigs Ann. Chem. 1988; 19–24
  • Kawano Y., Higuchi R., Isobe R., Komori T. Isolation and Structure of Two New Ceramide Lactosides. Liebigs Ann. Chem. 1988; 1181–1183
  • Kawano Y., Higuchi R., Komori T. Isolation and Structure of Five New Gangliosides. Liebigs Ann. Chem. 1990; 43–50
  • Komori T., Sanechika Y., Ito Y., Matsuo J., Nohara T., Kawasaki T. Strukturen eines neuen Cerebrosidgemischs und von Nucleosiden aus dem Seestern. Acanthaster planci, Liebigs Ann. Chem. 1980; 653–668
  • Higuchi R., Natori T., Komori T. Isolation and Characterization of Acanthacerebroside B and Structure Elucidation of Related, Nearly Homogeneous Cerebrosides. Liebigs Ann. Chem. 1990; 51–55
  • Higuchi R., Inagaki K., Natori T., Komori T., Kawajiri S. Structure of Three Ganglioside Molecular Species and a Homogeneous Ganglioside, and Biological Activity of the Ganglioside. Liebigs Ann. Chem. 1991; 1–10
  • Higuchi R., Kagoshima M., Komori T. Structures of Three New Cerebrosides, Astrocerebroside A, B, and C and of Related Nearly Homogeneous Cerebrosides. Liebigs Ann. Chem. 1990; 659–663
  • Kobayashi E., Motoki K., Fukushima H., Koezuka Y. KRN7000, A Novel Immunomodulator, and Its Antitumor Activities. Oncology Res. 1995; 7: 529–534
  • Motoki K., Kobayashi E., Uchida T., Fukushima H., Koezuka Y. Antitumor Activities of α-, β-monogalactosylceramides and Four Diastereomers of an α-galactosylceramide. Bioorg. Med. Chem. Lett. 1995; 5: 705–710
  • Natori T., Koezuka Y., Higa T. Agelasphins, Novel α-galactosyl ceramides from the Marine Sponge. Agelas mauritianus, Tetrahedron Lett. 1993; 34: 5591–5592
  • Natori T., Morita M., Akimoto K., Koezuka Y. Agelasphins, Novel Antitumor and Immunostimulatory Cerebrosides from the Marine Sponge. Agelas Mauritianus, Tetrahedron 1994; 50: 2771–2784
  • Cafieri F., Fattorusso E., Mahajnah Y., Mangoni A. Longiside, a Novel Digalactosylceramide from the Caribbean Sponge. Agelas longissima, Liebigs Ann. Chem. 1994; 1187–1189
  • Costantino V., Fattorusso E., Mangoni A. Glycolipids from Sponges. IV. Immunomodulating Glycosyl Ceramides from the Marine Sponge. Agelas dispar, Tetrahedron 1996; 52: 1573–1578
  • Costantino V., Fattorusso E., Mangoni A., Aknin M., Gaydou E. M. Axiceramide A an B, Two Novel Tri-α-glycosylceramides from the Marine Sponge. Axinella sp., Liebigs Ann. Chem. 1994; 1181–1185
  • Hayashi A., Nishimura Y., Matsubara T. Occurrence of ceramide digalactoside as the main glycosphingolipid in the marine sponge. Halichondria japonica, Biochimica et Biophysica Acta 1991; 1083: 179–186
  • Li H-Y., Matsunaga S., Fusetani N. Halicylindrosides, Antifungal and Cytotoxic Cerebrosides from the Marine Sponge. Halichondria cylindrata, Tetrahedron 1995; 51: 2273–2280
  • Higuchi R., Inagaki M., Togawa K., Miyamoto T., Komori T. Isolation and Structure of Cerebrosides from the Sea Cucumber. Pentacta australis, Liebigs Ann. Chem. 1994; 653–658
  • Endo M., Nakagawa M., Hamamoto Y., Ishihama M. Pharmacologically Active Substances from Southern Pacific Marine Invertebrates. Pure & Appl. Chem. 1986; 58: 387–394
  • Falsone G., Budzikiewicz H., Wendisch D. Uber Inhaltsstoffe von Euphorbiaceae 9. Mitt. Neue Cerebroside aus. Euphorbia biglangulosa Desf. Z. Naturforsch. 1987; 42b: 1476–1480
  • Irie A., Kubo H., Hoshi M. Glucosylceramide Having a Novel Tri-Unsaturated Long-Chain Base from the Spermatozoa of the Starfish. Asterias amurensis, J. Biochem. 1990; 107: 578–586
  • Jin W., Rinehart L., Jares-Erijman A. Ophidiacerebrosides: Cytotoxic Glycosphingolipids Containing a Novel Sphingosine from a Sea Star. J. Org. Chem. 1994; 59: 144–147
  • Higuchi R., Inagaki M., Togawa K., Miyamoto T., Komori T. Isolation and Structure of Three New Cerebrosides, CE-2b, CE-2c and CE-2d, from the Sea Cucumber. Cucumaria echinata, Liebigs Ann. Chem. 1994; 79–81
  • Constantino V., Fattorusso E., Mangoni A., Di Rosa M., Ianaro A. Glycolipids from Sponges. 6. Plakoside A and B, Two Unique Prenylated Glycosphingolipids with Immunosuppressive Activity from the Marine Sponge. Plaakortis simplex, J. Am. Chem. Soc. 1997; 119: 12465–12470
  • Bucci T. J., Howard P. C. Effect of Fumonisin Mycotoxins in Animals. J. Toxicol. Toxin Rev. 1996; 15: 293–302
  • Bucci T. J., Howard P. C., Tolleson W. H., Laborde J. B., Hansen D. K. Renal Effects of Fumonisin Mycotoxins in Animals. Toxicol. Pathology 1998; 26: 160–164
  • Abbas H. K., Duke S. O., Shier W. T., Riley R. T., Kraus G. A. The Chemistry and Biological Activities of the Natural Products AAL-toxin and the Fumonisins, in. Natural Toxins II: Structure, Mechanism of Action and Detection, B. R. Singh, A. T. Tu. American Chemical Society, Washington, D.C. 1996; 293–308
  • Shier W. T., Abbas H. K., Badria F. A. Structure-activity Relationships of the Corn Fungal Toxin Fumonisin B1: Implications for Food Safety. J. Nat. Toxins 1977; 6: 225–242
  • Abbas H. K., Boyette C. D. Phytotoxicity of Fumonisin B1 on Weed and Crop Species. Weed Technol. 1992; 40: 548–552
  • Tanaka T., Abbas H. K., Duke S. O. Structure-dependent Phytotoxicity of Fumonisins and Related Compounds in a Duckweed Bioassay. Phytochemistry 1993; 33: 779–785
  • Abbas H. K., Gelderblom W. C. A., Cawood M. E., Shier W. T. Biological Activities of Fumonisins, Mycotoxins from Fusarium moniliforme in Jimsonweed (Datura stramonium L.) and Mammalian Cell Cultures. Toxicon 1993; 31: 345–353
  • Abe A., Inokuchi J.-I., Jimbo M., Shimeno H., Nagamatsu A., Shayman J. A., Shukla G. S., Radin N. S. Improved Inhibitors of Glucosylceramide Synthase. J. Biochem. 1992; 111: 191–196
  • Abe A., Radin N. S., Shayman J. A., Wotring L. L., Zipkin R. E., Sivakumar R., Ruggieri J. M., Carson K. C., Ganem B. Structural and Stereochemical Studies of Potent Inhibitors of Glucosylceramide Synthase and Tumor Cell Growth. J. Lipid Res. 1995; 36: 611–621

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.