55
Views
6
CrossRef citations to date
0
Altmetric
Research Article

The Bacterial Zinc‐Metallophospholipases C

&
Pages 509-554 | Published online: 11 Aug 2004

References

  • Altemeier W. A., Furste W. L., Culbertson W. R., Wadsworth C. L., Tytell A. A., Logan M. A., Tytell A. G. Toxoid immunization in experimental gas gangrene. Ann. Surg. 1947; 126: 509
  • Alvarez A., Rives S., Nomdedeu B., Pereira A. Massive hemolysis in Clostridium perfringens infection. Haematologica 1999; 84: 571–573, [PUBMED], [INFOTRIEVE]
  • Annett C. B., Viste J. R., Chirino‐Trejo M., Classen H. L. Necrotic enteritis: effect of barley, wheat and corn diets on proliferation of Clostridium perfringens type A. Avian Pathol. 2002; 31: 599–602, [CROSSREF]
  • Asmuth D. M., Olson R. D., Hackett S. P., Bryant A. E., Tweten R. K., Tso J. Y., Zollman T., Stevens D. L. Effects of Clostridium perfringens recombinant and crude phospholipase C and theta‐toxin on rabbit hemodynamic parameters. J. Infect. Dis. 1995; 172: 1317–1323, [PUBMED], [INFOTRIEVE]
  • Awad M. M., Bryant A. E., Stevens D. L., Rood J. I. Virulence studies on chromosomal alpha‐toxin and theta‐toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha‐toxin in Clostridium perfringens‐mediated gas‐gangrene. Mol. Microbiol. 1995; 15: 191–202, [PUBMED], [INFOTRIEVE]
  • Baba E., Fuller A. L., Gilbert J. M., Thayer S. G., McDougald L. R. Effects of Eimeria brunetti infection and dietary zinc on experimental induction of necrotic enteritis in broiler chickens. Avian Dis. 1992; 36: 59–62, [PUBMED], [INFOTRIEVE]
  • Barzaghi G., Cerletti C., Degaetano G. Phospholipase C from Clostridium perfringens induces human platelet aggregation in plasma. Thromb. Haemost. 1988; 59: 236–239, [PUBMED], [INFOTRIEVE]
  • Basak A. K., Stuart D. I., Nikura T., Bishop D. H.L., Kelly D. C., Fearn A., Titball R. W. Purification, crystallization and preliminary x‐ray diffraction studies of alpha‐toxin of Clostridium perfringens. J. Mol. Biol. 1994; 244: 648–650, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Basak A. K., Howells A., Eaton J. T., Moss D. S., Naylor C. E., Miller J., Titball R. W. Crystallization and preliminary x‐ray diffraction studies of a‐toxin from two different strains (NCTC8237 and CER89L43) of Clostridium perfringens. Acta Crystallogr., D Biol. Crystallogr. 1998; 54: 1425–1428, [CROSSREF]
  • Bernheimer A. W., Avigad L. S., Kim K. S. Staphylococcal sphingomyelinase (beta‐hemolysin). Ann. N. Y. Acad. Sci. 1974; 236: 292–305, [PUBMED], [INFOTRIEVE]
  • Berridge M. J. Inositol triphosphate and diacylglycerol: two interacting secondary messengers. Ann. Rev. Biochem. 1987; 56: 159–193, [PUBMED], [INFOTRIEVE]
  • Boethius J., Rydqvist B., Mollby R., Wadstrom T. Effect of a highly purified phospholipase C on on some electrophysiological properties of the frog muscle fibre membrane. Life Sci. 1973; 13: 171–176, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Brennan J., Bagg R., Barnum D., Wilson J., Dick P. Efficacy of narasin in the prevention of necrotic enteritis in broiler chickens. Avian Dis. 2001; 45: 210–214, [PUBMED], [INFOTRIEVE]
  • Bryant A., Stevens D. Phospholipase C and perfringolysin O from Clostridium perfringens up‐regulate endothelial cell adherence moloecule 1 and intercellular leukocyte adherence molecule 1 expression and induce interleukin‐8 synthesis in cultured human umbilical vein endothelial cells. Infect. Immun. 1996; 64: 358–362, [PUBMED], [INFOTRIEVE]
  • Bryant A. E., Chen R. Y.Z., Nagata Y., Wang Y., Lee C. H., Finegold S., Guth P. H., Stevens D. L. Clostridial gas gangrene. I. Cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of Clostridium perfringens. J. Infect. Dis. 2000a; 182: 799–807, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bryant A. E., Chen R. Y.Z., Nagata Y., Wang Y., Lee C. H., Finegold S., Guth P. H., Stevens D. L. Clostridial gas gangrene. II. Phospholipase C‐induced activation of platelet gpIIbIIIa mediates vascular occlusion and myonecrosis in Clostridium perfringens gas gangrene. J. Infect. Dis. 2000b; 182: 808–815, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bryant A. E., Bayer C. R., Hayes‐Schroer S. M., Stevens D. L. Activation of platelet gpIIbIIIa by phospholipase C from Clostridium perfringens involves store‐operated calcium entry. J. Infect. Dis. 2003; 187: 408–417, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bullifent H. L., Moir A., Awad M. M., Scott P. T., Rood J. I., Titball R. W. The level of expression of alpha‐toxin by different strains of Clostridium perfringens is dependent on differences in promoter structure and genetic background. Anaerobe 1996; 2: 365–371, [CROSSREF]
  • Bunting M., Lorant D. E., Bryant A. E., Zimmerman G. A., McIntyre T. M., Stevens D. L., Prescott S. M. Alpha‐toxin from Clostridium perfringens induces proinflammatory changes in endothelial cells. J. Clin. Invest. 1997; 100: 565–574, [PUBMED], [INFOTRIEVE]
  • Carter G., White P., Fernie M., King S., McLean G., Titball R., Carr F. J. Enhanced antitumour effect of liposomal daunorubicin using antibody‐phospholipase C conjugates or fusion protein. Int. J. Oncol. 1998; 13: 819–825, [PUBMED], [INFOTRIEVE]
  • Chovnick A., Schneider W. P., Tso J. Y., Queen C., Chang C. N. A recombinant membrane acting immunotoxin. Cancer Res. 1991; 51: 465–467, [PUBMED], [INFOTRIEVE]
  • Christiansson A., Kuypers F. A., Roelofsen B., Op Den Kamp J. A.F., van Deenen L. L.M. Lipid molecular shape affects erythrocyte morphology: a study involving replacement of native phosphatidylcholine with different species followed by treatment of cells with sphingomyelinase C or phospholipase A2. J. Cell. Biol. 1985; 101: 1455–1462, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Clark G. C., Briggs D. C., Karasawa T., Wang X., Cole A. R., Maegawa T., Jayasekera P. N., Naylor C. E., Miller J., Moss D. S., Nakamura S., Basak A. K., Titball R. W. Clostridium absonum alpha‐toxin: new insights into clostridial phospholipase C substrate binding and specificity. J. Mol. Biol. 2003; 333: 759–769, submitted [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Eaton J. T., Naylor C. E., Howells A. M., Moss D. S., Titball R. W., Basak A. K. Crystal structure of the C. perfringens alpha‐toxin with the active site closed by a flexible loop region. J. Mol. Biol. 2002; 319: 275–281, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • El‐Sayed M. Y., DeBose C. D., Coury L. A., Roberts M. F. Sensitivity of phospholipase C (Bacillus cereus) activity to phosphatidylcholine structural modifications. Biochim. Biophys. Acta. 1985; 837: 325–335
  • Exton J. H. Signalling through phosphatidylcholine breakdown. 1990; 265: 1–4
  • Flores‐Diaz M., Alape‐Giron A., Titball R. W., Moos M., Guillouard I., Cole S., Howells A. M., von Eichel‐Streiber C., Florin I., Thelestam M. UDP‐glucose deficiency causes hypersensitivity to the cytotoxic effect of Clostridium perfringens phospholipase C. J. Biol. Chem. 1998; 273: 24433–24438, [CROSSREF]
  • Fujii Y., Sakurai J. Contraction of the rat isolated aorta caused by Clostridium perfringens alpha toxin (phospholipase‐C)—evidence for the involvement of arachidonic acid metabolism. Br. J. Pharmacol. 1989; 97: 119–124, [PUBMED], [INFOTRIEVE]
  • Fujii Y., Nomura S., Oshita Y., Sakurai J. Excitatory effect of Clostridium perfringens alpha‐toxin on the rat isolated aorta. Br. J. Pharmacol. 1986a; 88: 531–539, [PUBMED], [INFOTRIEVE]
  • Fujii Y., Shirotani M., Sakurai J. Effect of Clostridium perfringens alpha‐toxin on rabbit platelets. Jpn. J. Med. Sci. Biol. 1986b; 39: 244–245
  • Geoffroy C., Raveneau J., Beretti J. L., Lecroisey A., Vazquez‐Boland J. A., Alouf J. E., Berche P. Purification and characterization of an extracellular 29‐kilodalton phospholipase‐C from Listeria monocytogenes. Infect. Immun. 1991; 59: 2382–2388, [PUBMED], [INFOTRIEVE]
  • Gillmor S. A., Villaseñor A., Fletterick R., Sigal E., Browner M. F. The structure of mammalian 15‐lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nature Struct. Biol 1997; 4: 1003–1009, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Gilmore M. S., Cruzrodz A. L., Leimeisterwachter M., Kreft J., Goebel W. A Bacillus cereus cytolytic determinant, cereolysin‐AB, which comprises the phospholipase C and sphingomyelinase genes—nucleotide sequence and genetic linkage. J. Bacteriol. 1989; 171: 744–753, [PUBMED], [INFOTRIEVE]
  • Ginter A., Williamson E. D., Dessy F., Coppe P., Bullifent H., Howells A., Titball R. W. Molecular variation between the alpha‐toxins from the type strain (NCTC 8237) and clinical isolates of Clostridium perfringens associated with disease in man and animals. Microbiology (UK) 1996; 142: 191–198
  • Gubash S. M. Improved egg‐yolk agar plate medium for the detection of Clostridial phospholipase‐C activity. Res. Microbiol. 1991; 142: 87–93, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Guillouard I., Garnier T., Cole S. T. Use of site‐directed mutagenesis to probe structure‐function relationships of alpha‐toxin from Clostridium perfringens. Infect. Immun. 1996; 64: 2440–2444, [PUBMED], [INFOTRIEVE]
  • Gustafson C., Tagesson C. Phospholipase‐C from Clostridium perfringens stimulates phospholipase‐A2‐mediated arachidonic acid release in cultured intestinal epithelial cells (Int‐407). Scand. J. Gastroenterol. 1990; 25: 363–371, [PUBMED], [INFOTRIEVE]
  • Heier B. T., Lovland A., Soleim K. B., Kaldhusdal M., Jarp J. A field study of naturally occurring specific antibodies against Clostridium perfringens alpha toxin in Norwegian broiler flocks. Avian Dis. 2001; 45: 724–732, [PUBMED], [INFOTRIEVE]
  • Hough E., Hansen L. K., Birkness B., Jynge K., Hansen S., Hordik A., Little C., Dodson E., Derewenda Z. High resolution (1.5A) crystal structure of phospholipase C from Bacillus cereus. Nature 1989; 338: 357–360, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hubl W., Mostbeck B., Hartleb H., Pointner H., Kofler K., Bayer P. M. Investigation of the pathogenesis of massive hemolysis in a case of Clostridium perfringens septicemia. Ann. Hematol. 1993; 67: 145–147, [PUBMED], [INFOTRIEVE]
  • Jepson M., Howells A., Bullifent H. L., Bolgiano B., Crane D., Miller J., Holley J., Jayasekera P., Titball R. W. Differences in the carboxy‐terminal (putative phospholipid binding) domains of Clostridium perfringens and Clostridium bifermentans phospholipases C influence the hemolytic and lethal properties of these enzymes. Infect. Immun. 1999; 67: 3297–3301, [PUBMED], [INFOTRIEVE]
  • Jepson M., Bullifent H. L., Crane D., Flores‐Diaz M., Alape‐Giron A., Jayasekeera P., Lingard B., Moss D., Titball R. W. Tyrosine 331 and phenylalanine 334 in Clostridium perfringens alpha‐toxin are essential for cytotoxic activity. FEBS Lett. 2001; 495: 172–177, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Johansen T., Holm T., Guddal P. H., Sletten K., Haugli F. B., Little C. Cloning and sequencing of the gene encoding the phosphatidylcholine‐preferring phospholipase C of Bacillus cereus. Gene 1988; 65: 293–304, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Justin N., Walker N., Bullifent H. L., Songer G., Bueschel D. M., Jost H., Naylor C., Miller J., Moss D. S., Titball R. W., Basak A. K. The first strain of Clostridium perfringens isolated from an avian source has an alpha‐toxin with divergent structural and kinetic properties. Biochemistry 2002; 41: 6253–6262, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kaldhusdal M., Hofshagen M., Lovland A., Langstrand H., Redhead K. Necrotic enteritis challenge models with broiler chickens raised on litter: evaluation of preconditions, Clostridium perfringens strains and outcome variables. FEMS Immunol. Med. Microbiol. 1999; 24: 337–343, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kameyama K., Matsushita O., Katayama S., Minami J., Maeda M., Nakamura S., Okabe A. Analysis of the phospholipase C gene of Clostridium perfringens KZ1340 isolated from Antarctic soil. Microbiol. Immunol. 1996; 40: 255–263, [PUBMED], [INFOTRIEVE]
  • Karasawa T., Wang X. M., Maegawa T., Michiwa Y., Kita H., Miwa K., Nakamura S. Clostridium sordellii phospholipase C: gene cloning and comparison of enzymatic and biological activities with those of Clostridium perfringens and Clostridium bifermentans phospholipase C. Infect. Immun. 2003; 71: 641–646, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Katayama S., Matsushita O., Minami J., Mizobuchi S., Okabe A. Comparison of the alpha toxin genes of Clostridium perfringens type‐A and type‐C strains—evidence for extragenic regulation of transcription. Infect. Immun. 1993; 61: 457–463, [PUBMED], [INFOTRIEVE]
  • Krug E. L., Kent C. Phospholipase C from Clostridium perfringens: preparation and characterisation of homogenous enzyme. 1984; 231: 400–410
  • Kurioka S., Matsuda M. Phospholipase C assay using p‐nitrophenolphosphorylcholine and its application to studying the metal and detergent requirement of the enzyme. Anal. Biochem. 1976; 75: 281–289, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lim S. J., Koh U. C., Lee E. O., Kim C. K. Liposome‐based assay for phospholipase C. Bull. Korean Chem. Soc. 1997; 18: 761–766
  • Little C., Aurebekk B., Otnaess A.‐B. Purification by affinity chromatography of phospholipase C from Bacillus cereus. FEBS Lett. 1975; 52: 175–179, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • MacFarlane M. G., Knight B. C.J.G. The biochemistry of bacterial toxins I Lecithinase activity of Cl welchii toxins. 1941; 35: 884–902
  • MacLennan J. D. The histotoxic clostridial infections of man. Bacteriol. Rev. 1962; 26: 177–276, [PUBMED], [INFOTRIEVE]
  • MacLennan J. D., MacFarlane M. G. The treatment of gas gangrene. Br. Med. J. 1944; 683
  • Manteca C., Daube G., Pirson V., Limbourg B., Kaeckenbeeck A., Mainil J. G. Bacterial intestinal flora associated with enterotoxaemia in Belgian Blue calves. Vet. Microbiol. 2001; 81: 21–32, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • McNee J. W., Dunn J. S. The method of spread of gas gangrene into living muscle. 1917; 1: 727–729
  • Mollby R. Bacterial phospholipases. Bacterial Toxins and Cell Membranes, J. Jeljaszewicz, T. Wadstrom. Academic Press, London 1978; 367–424
  • Moolten F. L., Achreiber B. M., Zadjel S. H. Antibodies conjugated to potent cytotoxins as specific antitumour agents. Immunol. Rev. 1982; 62: 47–73, [PUBMED], [INFOTRIEVE]
  • Moreau H., Pieroni G., Jolivetreynaud C., Alouf J. E., Verger R. A new kinetic approach for studying phospholipase‐C (Clostridium perfringens alpha toxin) activity on phospholipid monolayers. Biochemistry 1988; 27: 2319–2323, [PUBMED], [INFOTRIEVE]
  • Murrell T. G.C., Murrell W. G., Lindsay J. A. Sudden‐infant‐death‐syndrome (Sids)—are common bacterial toxins responsible, and do they have a vaccine potential. Vaccine 1994; 12: 365–368, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Nagahama M., Sakurai J. Threonine‐74 is a key site for the activity of Clostridium perfringens alpha‐toxin. Microbiol. Immunol. 1996; 40: 189–193, [PUBMED], [INFOTRIEVE]
  • Nagahama M., Ochi S., Kobayashi K., Sakurai J. The relationship between histidine residues and various biological activities of Clostridium perfringens alpha‐toxin. Abstr. Pap.‐Am. Chem. Soc. 1995; 209: 75‐AGFD
  • Nagahama M., Michiue K., Sakurai J. Membrane‐damaging action of Clostridium perfringens alpha‐toxin on phospholipid liposomes. Biochim. Biophys. Acta, Biomembr. 1996a; 1280: 120–126, [CROSSREF]
  • Nagahama M., Michiue K., Kobayashi K., Sakurai J. Effect of Clostridium perfringens alpha‐toxin on phospholipid‐cholesterol liposomes. Jpn. J. Med. Sci. Biol. 1996b; 49: 249–250
  • Nagahama M., Nakayama T., Michiue K., Sakurai J. Site‐specific mutagenesis of Clostridium perfringens alpha‐toxin: replacement of Asp‐56, Asp‐130, or Glu‐152 causes loss of enzymatic and hemolytic activities. Infect. Immun. 1997; 65: 3489–3492, [PUBMED], [INFOTRIEVE]
  • Nagahama W., Mukai M., Ochi S., Sakurai J. Role of tryptophan‐1 in hemolytic and phospholipase C activities of Clostridium perfringens alpha‐toxin. Microbiol. Immunol. 2000; 44: 585–589, [PUBMED], [INFOTRIEVE]
  • Nagahama M., Mukai M., Morimitsu S., Ochi S., Sakurai J. Role of the C‐domain in the biological activities of Clostridium perfringens alpha‐toxin. Microbiol. Immunol. 2002; 46: 647–655, [PUBMED], [INFOTRIEVE]
  • Nalefski E. A., Falke J. J. The C2 domain calcium binding motif: structural and functional diversity. Protein Sci. 1996; 12: 2375–2390
  • Naylor C. E., Eaton J. T., Howells A., Justin N., Moss D. S., Titball R. W., Basak A. K. Structure of the key toxin in gas gangrene. Nat. Struct. Biol. 1998; 5: 738–746, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Naylor C. E., Jepson M., Crane D. T., Titball R. W., Miller J., Basak A. K., Bolgiano B. Characterisation of the calcium‐binding C‐terminal domain of Clostridium perfringens alpha‐toxin. J. Mol. Biol. 1999; 294: 757–770, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Ninomiya M., Matsushita O., Minami J., Sakamoto H., Nakano M., Okabe A. Role of alpha‐toxin in Clostridium perfringens infection determined by using recombinants of Clostridium perfringens and Bacillus subtilis. Infect. Immun. 1994; 62: 5032–5039, [PUBMED], [INFOTRIEVE]
  • Nishizuka Y. Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258: 607–614, [PUBMED], [INFOTRIEVE]
  • Ochi S., Hashimoto K., Nagahama M., Sakurai J. Hemolysis and phospholipid metabolism elicited by Clostridium perfringens alpha‐toxin through activation of GTP‐binding protein in rabbit erythrocytes. Jpn. J. Med. Sci. Biol. 1996; 49: 266–267
  • Ochi S., Miyawaki T., Matsuda H., Oda M., Nagahama M., Sakurai J. Clostridium perfringens alpha‐toxin induces rabbit neutrophil adhesion. Microbiology (UK) 2002; 148: 237–245
  • Ohsaka A., Tsuchiya M., Oshio C., Miyaira M., Suzuki K., Yamkawa Y. Aggregation of platelets in the micro‐circulation of the rat induced by the alpha‐toxin (phospholipase C) of Clostridium perfringens. 1978; 16: 333–341
  • Otnaess A.‐B. The hydrolysis of sphingomyelin by phospholipase C from Bacillus cereus. FEBS Lett. 1980; 114: 202–204, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Otnaess A.‐B., Little C., Sletten K., Wallin R., Johnsen S., Flensgrud R., Prydz H. Some characteristics of phospholipase C from Bacillus cereus. Eur. J. Biochem. 1977; 79: 459–468, [PUBMED], [INFOTRIEVE]
  • Perisic O., Fong S., Lynch D. E., Bycroft M., Williams R. L. Crystal structure of a calcium‐phospholipid binding domain from cytosolic phospholipase A2. J. Biol. Chem. 1998; 273: 1596–1604, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Pons J. L., Ageron E., Mangeney N., Tessedre A. C., Niel P., Leluan G., Grimont P. A.D. Genetic relationships of Clostridium bifermentans and Clostridium sordellii analyzed by multilocus enzyme electrophoresis and DNA–DNA hybridization. Syst. Appl. Microbiol. 1997; 20: 381–386
  • Ponting C. P., Parker P. J. Extending the C2 domain family: C2s in PKCs d, e, h, q, phospholipases, GAPs, and perforin. Protein Sci. 1996; 5: 162–166, [PUBMED], [INFOTRIEVE]
  • Riddell C., Kong X. M. The influence of diet on necrotic enteritis in broiler‐chickens. Avian Dis. 1992; 36: 499–503, [PUBMED], [INFOTRIEVE]
  • Robertson M., Keppie J. Active immunisation for gas gangrene. 1943; II: 311
  • Roelofsen B., Op Den Kamp J. A.F. Chemical and enzymatic localisation of phospholipids in biological membranes. Tech. Lipid Membr. Biochem. 1982; B413: 1–28
  • Saintjoanis B., Garnier T., Cole S. T. Gene cloning shows the alpha‐toxin of Clostridium perfringens to contain both sphingomyelinase and lecithinase activities. Mol. Gen. Genet. 1989; 219: 453–460, [CROSSREF]
  • Sakurai J., Fujii Y., Shirotani M. Contraction induced by Clostridium perfringens alpha toxin in the isolated rat ileum. Toxicon 1990; 28: 411–418, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Sakurai J., Tsuchiya Y., Ochi S., Fujii Y. Effect of Clostridium perfringens alpha‐toxin on contraction of isolated guinea‐pig diaphragm. Microbiol. Immunol. 1991; 35: 481–486, [PUBMED], [INFOTRIEVE]
  • Sakurai J., Ochi S., Tanaka H. Evidence for coupling of Clostridium perfringens alpha‐toxin induced hemolysis to stimulated phosphatidic acid formation in rabbit erythrocytes. Infect. Immun. 1993; 61: 3711–3718, [PUBMED], [INFOTRIEVE]
  • Sakurai J., Ochi S., Tanaka H. Regulation of Clostridium perfringens alpha‐toxin activated phospholipase‐C in rabbit erythrocyte membranes. Infect. Immun. 1994; 62: 717–721, [PUBMED], [INFOTRIEVE]
  • Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 1983; 220: 568–575, [PUBMED], [INFOTRIEVE]
  • Sato H., Yamakawa Y., Ito A., Murata R. Effect of zinc and calcium ions on the production of alpha‐toxin and proteases by Clostridium perfringens. Infect. Immun. 1978; 20: 325–333, [PUBMED], [INFOTRIEVE]
  • Schmid M., Walcher M., Bubert A., Wagner M., Schleifer K. H. Nucleic acid based, cultivation independent detection of Listeria spp. and genotypes of L. monocytogenes. FEMS Immunol. Med. Microbiol 2003; 35: 215–225, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Schoepe H., Pache C., Neubauer A., Potschka H., Schlapp T., Wieler L. H., Baljer G. Naturally occurring Clostridium perfringens nontoxic alpha‐toxin variant as a potential vaccine candidate against alpha‐toxin‐associated diseases. Infect. Immun. 2001; 69: 7194–7196, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Shao X., Daveltov B. A., Sutton R. B., Südhof T. C., Rizo J. Bipartite Ca2 + ‐binding motif in C2 domains of synaptotagmin and protein kinase C. Science 1996; 273: 248–251, [PUBMED], [INFOTRIEVE]
  • Siarakas S., Damas E., Murrell W. G. Is cardiorespiratory failure induced by bacterial toxins the cause of sudden‐infant‐death‐syndrome—studies with an animal model (the rabbit). Toxicon 1995; 33: 635–649, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Smith G. A., Marquis H., Jones S., Johnston N. C., Portnoy D. A., Goldfine H. The two distinct phospholipase C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell‐to‐cell spread. Infect. Immun. 1995; 63: 4231–4237, [PUBMED], [INFOTRIEVE]
  • Stevens D. L., Bryant A. E. Pathogenesis of Clostridium perfringens infections: mechanisms and mediators of shock. Clin. Infect. Dis. 1997; 25: S160–S164, [PUBMED], [INFOTRIEVE]
  • Stevens D. L., Tweten R. K., Awad M. M., Rood J. I., Bryant A. E. Clostridial gas gangrene: evidence that alpha and theta toxins differentially modulate the immune response and induce acute tissue necrosis. J. Infect. Dis. 1997; 176: 189–195, [PUBMED], [INFOTRIEVE]
  • Stevens D. L., Titball R. W., Jepson M., Bayer C., Schroer S., Bryant A. E. Immunization with C‐domain of alpha‐toxin prevents lethal infection, localises tissue injury and promotes host response to challenge with viable Clostridium perfringens. J. Clin. Microbiol. 2003, submitted
  • Sugahara T., Takahashi T., Yamaya S., Ohsaka A. In vitro aggregation of platelets induced by alpha‐toxin (phospholipase C) of Clostridium perfringens. 1977; 29: 255–263
  • Sutton R. B., Sprang S. R. Structure of the protein kinase Cb phospholipid‐binding C2 domain complexed with Ca2 +. Structure 1998; 6: 1395–1405, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Synder W. R. A continuous spectrophotometric assay for the Bacillus cereus phospholipase C using a thiophosphate analog: evaluation of assay conditions and chromogenic agents. Anal. Biochem. 1987; 164: 199–206, [CROSSREF]
  • Taguchi R., Ikezawa H. Phospholipase C from Clostridium novyi type A.I. Biochim. Biophys. Acta 1975; 409: 75–85, [PUBMED], [INFOTRIEVE]
  • Takahashi T., Sugahara T., Ohsaka A. Phospholipase C from Clostridium perfringens. Methods Enzymol. 1981; 71: 710–725, [PUBMED], [INFOTRIEVE]
  • Titball R. W., Rubidge T. The role of histidine residues in the alpha toxin of Clostridium perfringens. FEMS Microbiol. Lett. 1990; 68: 261–265
  • Titball R. W., Hunter S. E.C., Martin K. L., Morris B. C., Shuttleworth A. D., Rubidge T., Anderson D. W., Kelly D. C. Molecular cloning and nucleotide sequence of the alpha‐toxin (phospholipase‐C) of Clostridium perfringens. Infect. Immun. 1989; 57: 367–376, [PUBMED], [INFOTRIEVE]
  • Titball R. W., Leslie D. L., Harvey S., Kelly D. Hemolytic and sphingomyelinase activities of Clostridium perfringens alpha‐toxin are dependent on a domain homologous to that of an enzyme from the human arachidonic acid pathway. Infect. Immun. 1991; 59: 1872–1874, [PUBMED], [INFOTRIEVE]
  • Titball R. W., Fearn A. M., Williamson E. D. Biochemical and immunological properties of the C‐terminal domain of the alpha‐toxin of Clostridium perfringens. FEMS Microbiol. Lett. 1993; 110: 45–50, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Titball R. W., Naylor C. E., Miller J., Moss D. S., Basak A. K. Opening of the active site of Clostridium perfringens alpha‐toxin may be triggered by membrane binding. Int. J. Med. Microbiol. 2000; 290: 357–361, [PUBMED], [INFOTRIEVE]
  • Tsai I. K., Yen M. Y., Ho I. C., Yu K. W., Liu C. Y., Cheng D. L. Clostridium perfringens septicemia with massive hemolysis. Scand. J. Infect. Dis. 1989; 21: 467–471, [PUBMED], [INFOTRIEVE]
  • Tso J. Y., Siebel C. Cloning and expression of the phospholipase‐C gene from Clostridium perfringens and Clostridium bifermentans. Infect. Immun. 1989; 57: 468–476, [PUBMED], [INFOTRIEVE]
  • Tsutsui K., Minami J., Matsushita O., Katayama S., Taniguchi Y., Nakamura S., Nishioka M., Okabe A. Phylogenetic analysis of phospholipase‐C genes from Clostridium perfringens Type‐A to Type‐E and Clostridium novyi. J. Bacteriol. 1995; 177: 7164–7170, [PUBMED], [INFOTRIEVE]
  • van Deenen L. L.M., Demel R. A., Guerts van Kessel W. S.M., Kamp H. H., Roelofsen B., Verkleij A. J., Wirtz K. W.A., Zwaal R. F.A. Phospholipases and monolayers as tools in studies on membrane structure. The Structural Basis of Membrane Function, Y. Hatefi, L. Djavadi‐Ohaniance. Academic Press, New York 1976; 21–38
  • Vazquez‐Boland J.‐A., Kocks C., Dramsi S., Ohayon H., Geoffroy C., Mengaud J., Cossart P. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell–cell spread. Infect. Immun. 1992; 60: 219–230
  • Vazquez‐Boland J.‐A., Kuhn M., Berche P., Chakraborty T., Dominquez‐Bernal G., Goebel W., Gonzalez‐Zorn B., Wehland J., Kreft J. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 2001; 14: 584–640, [CROSSREF]
  • Verkleij A. J., Zwaal R. F.A., Roelofsen B., Comfurius P., Kastelijn D., van Deenen L. L.M. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholiases and freeze‐etch electron microscopy. 1973; 323: 178–193
  • Verma N. D. Immune response in calves to the use of Clostridium perfringens Type A vaccine. Indian J. Anim. Sci. 1987; 57: 977–979
  • Waite M. Handbook of Lipid Research 5. The Phospholipases. Plenum Press, New York 1987
  • Walker N., Holley J., Naylor C. E., Flores‐Diaz M., Alape‐Giron A., Carter G., Carr F. J., Thelestam M., Keyte M., Moss D. S., Basak A. K., Miller J., Titball R. W. Identification of residues in the carboxy‐terminal domain of Clostridium perfringens alpha‐toxin (Phospholipase C) which are required for its biological activities. Arch. Biochem. Biophys. 2000; 384: 24–30, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wierup M. The Swedish experience of the 1986 year ban of antimicrobial growth promoters, with special reference to animal health, disease prevention, productivity, and usage of antimicrobials. Microb. Drug Resist. Mech. Epidemiol. Dis. 2001; 7: 183–190
  • Williamson E. D., Titball R. W. A genetically engineered vaccine against the alpha‐toxin of Clostridium perfringens protects mice against experimental gas‐gangrene. Vaccine 1993; 11: 1253–1258, [PUBMED], [INFOTRIEVE], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.