2,626
Views
61
CrossRef citations to date
0
Altmetric
Focus Articles

Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems

, , , , &
Article: 044407 | Received 07 Jun 2013, Accepted 16 Jul 2013, Published online: 16 Aug 2013

References

  • DeanMFojoTBatesS 2005 Tumour stem cells and drug resistance Nature Rev. Cancer 5 275 284 275–84 10.1038/nrc1590
  • PaciottiG FKingstonD G ITamarkinL 2006 Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors Drug Dev. Res. 67 47 54 47–54 10.1002/ddr.20066
  • SlowingI ITrewynB GGiriSLinV S Y 2007 Mesoporous silica nanoparticles for drug delivery and biosensing applications Adv. Funct. Mater. 17 1225 1236 1225–36 10.1002/adfm.200601191
  • NasonklaNBeyERenJAiHKhemtongCGuthiJ SChinS FSherryA DBoothmanD AGaoJ 2006 Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems Nano Lett. 6 2427 2430 2427–30 10.1021/nl061412u
  • SoppimathK STanD CYangY Y 2005 pH-triggered thermally responsive polymer core–shell nanoparticles for drug delivery Adv. Mater. 17 318 323 318–23 10.1002/adma.200401057
  • DromiSFrenkelVLukATraughberBAngstadtMBurMPoffJXieJLibuttiS KLiK CWoodB J 2007 Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect Clin. Cancer Res. 13 2722 2727 2722–7 10.1158/1078-0432.CCR-06-2443
  • YangHKaoW J 2007 Synthesis and characterization of nanoscale dendritic RGD clusters for potential applications in tissue engineering and drug delivery Int. J. Nanomed. 1 89 99 89–99 10.2147/nano.2007.2.1.89
  • ArigaKJiQMcShaneM JLvovY MVinuAHillJ P 2011 Inorganic nanoarchitectonics for biological applications Chem. Mater. 24 728 737 728–37 10.1021/cm202281m
  • UboldiCGiudettiGBroggiFGillilandDPontiJRossiF 2012 Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in Balb/3T3 mouse fibroblasts Mutat. Res. 745 11 20 11–20 10.1016/j.mrgentox.2011.10.010
  • XiaoQ GTaoXZouH KChenJ F 2008 Comparative study of solid silica nanoparticles and hollow silica nanoparticles for the immobilization of lysozyme Chem. Eng. J. 137 38 44 38–44 10.1016/j.cej.2007.09.012
  • StöberWFinkABohnE 1968 Controlled growth of monodisperse silica spheres in the micron size range J. Colloid Interface Sci. 26 62 69 62–9 10.1016/0021-9797(68)90272-5
  • GrünMLauerIUngerK K 1997 The synthesis of micrometer-and submicrometer-size spheres of ordered mesoporous oxide MCM-41 Adv. Mater. 9 254 257 254–7 10.1002/adma.19970090317
  • BeckJ Set al 1992 A new family of mesoporous molecular-sieves prepared with liquid-crystal templats J. Am. Chem. Soc. 114 10834 10843 10834–43 10.1021/ja00053a020
  • KresgeC TLeonowiczM ERothW JVartuliJ CBeckJ S 1992 Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism Nature 359 710 712 710–2 10.1038/359710a0
  • HuoQMargoleseD IStuckyG D 1996 Surfactant control of phases in the synthesis of mesoporous silica-based materials Chem. Mater. 8 1147 1160 1147–60 10.1021/cm960137h
  • VartuliJSchmittKKresgeCRothWLeonowiczMMcCullenSHellringSBeckJSchlenkerJ 1994 Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications Chem. Mater. 6 2317 2326 2317–26 10.1021/cM0048a018
  • CaiQLuoZ-SPangW-QFanY-WChenX-HCuiF-Z 2001 Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium Chem. Mater. 13 258 263 258–63 10.1021/cm990661z
  • SuzukiKIkariKImaiH 2004 Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system J. Am. Chem. Soc. 126 462 463 462–3 10.1021/ja038250d
  • SlowingI IVivero-EscotoJ LTrewynB GLinV S Y 2010 Mesoporous silica nanoparticles: structural design and applications J. Mater. Chem. 20 7924 7937 7924–37 10.1039/c0jm00554a
  • AmbrogioM WThomasC RZhaoY-LZinkJ IStoddartJ F 2011 Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine Acc. Chem. Res. 44 903 913 903–13 10.1021/ar200018x
  • ArigaKVinuAYamauchiYJiQHillJ P 2012 Nanoarchitectonics for mesoporous materials Bull. Chem. Soc. Japan 85 1 32 1–32 10.1246/bcsj.20110162
  • LiZBarnesJ CBosoyAStoddartJ FZinkJ I 2012 Mesoporous silica nanoparticles in biomedical applications Chem. Soc. Rev. 41 2590 2605 2590–605 10.1039/c1cs15246g
  • TarnDAshleyC EXueMCarnesE CZinkJ IBrinkerC J 2013 Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility Acc. Chem. Res. 46 792 801 792–801 10.1021/ar3000986
  • WuK C WJiangXYamauchiY 2011 New trend on mesoporous films: precise controls of one-dimensional (1D) mesochannels toward innovative applications J. Mater. Chem. 21 8934 8939 8934–9 10.1039/c1jm10548e
  • WuK C WYamauchiY 2012 Controlling physical features of mesoporous silica nanoparticles (MSNs) for emerging applications J. Mater. Chem. 22 1251 1256 1251–6 10.1039/c1jm13811a
  • FerrisD PZhaoY-LKhashabN MKhatibH AStoddartJ FZinkJ I 2009 Light-operated mechanized nanoparticles J. Am. Chem. Soc. 131 1686 1688 1686–8 10.1021/ja807798g
  • WangYLiBZhangLSongHZhangL 2012 Targeted delivery system based on magnetic mesoporous silica nanocomposites with light-controlled release character ACS App. Mater. Interfaces 5 11 15 11–5 10.1021/am302492e
  • YuanQZhangYChenTLuDZhaoZZhangXLiZYanC-HTanW 2012 Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid ACS Nano 6 6337 6344 6337–44 10.1021/nn3018365
  • ParkCLeeKKimC 2009 Photoresponsive cyclodextrin-covered nanocontainers and their sol–gel transition induced by molecular recognition Angew. Chem. Int. Edn. Engl. 48 1275 1278 1275–8 10.1002/anie.200803880
  • MalN KFujiwaraMTanakaY 2003 Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica Nature 421 350 353 350–3 10.1038/nature01362
  • KnezevicN ZTrewynB GLinV S Y 2011 Functionalized mesoporous silica nanoparticle-based visible light responsive controlled release delivery system Chem. Commun. 47 2817 2819 2817–9 10.1039/c0cc04424e
  • Vivero-EscotoJ LSlowingI IWuC-WLinV S Y 2009 Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere J. Am. Chem. Soc. 131 3462 3463 3462–3 10.1021/ja900025f
  • LinQHuangQLiCBaoCLiuZLiFZhuL 2010 Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one- or two-photon process J. Am. Chem. Soc. 132 10645 10647 10645–7 10.1021/ja103415t
  • SchwarzAStänderSBerneburgMBöhmMKulmsDvan SteegHGrosse-HeitmeyerKKrutmannJSchwarzT 2001 Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair Nature Cell Biol. 4 26 31 26–31 10.1038/ncb717
  • JuzenasPJuzenieneAKaalhusOIaniVMoanJ 2002 Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo Photochem. Photobiol. Sci. 1 745 748 745–8 10.1039/b203459j
  • LiuHChenDLiLLiuTTanLWuXTangF 2011 Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity Angew. Chem. 123 921 925 921–5 10.1002/ange.201002820
  • FangWYangJGongJZhengN 2012 Photo-and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@ Ag nanoparticles Adv. Funct. Mater. 22 842 848 842–8 10.1002/adfm.201101960
  • TangHShenSGuoJChangBJiangXYangW 2012 Gold nanorods@mSiO2 with a smart polymer shell responsive to heat/near-infrared light for chemo-photothermal therapy J. Mater. Chem. 22 16095 16103 16095–103 10.1039/c2jm32599c
  • HelmlingerGYuanFDellianMJainR K 1997 Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation Nature Med. 3 177 182 177–82 10.1038/nm0297-177
  • SilvaA SYunesJ AGilliesR JGatenbyR A 2009 The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion Cancer Res. 69 2677 2684 2677–84 10.1158/0008-5472.CAN-08-2394
  • MaxfieldF RMcGrawT E 2004 Endocytic recycling Nature Rev. Mol. Cell Biol. 5 121 132 121–32 10.1038/nrm1315
  • ZhaoY-LLiZKabehieSBotrosY YStoddartJ FZinkJ I 2010 pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles J. Am. Chem. Soc. 132 13016 13025 13016–25 10.1021/ja105371u
  • MengHXueMXiaTZhaoY-LTamanoiFStoddartJ FZinkJ INelA E 2010 Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves J. Am. Chem. Soc. 132 12690 12697 12690–7 10.1021/ja104501a
  • LinC-HChengS-HLiaoW-NWeiP-RSungP-JWengC-FLeeC-H 2012 Mesoporous silica nanoparticles for the improved anticancer efficacy of cis-platin Int. J. Pharm. 429 138 147 138–47 10.1016/j.ijpharm.2012.03.026
  • LeeC HChengS HHuangISourisJ SYangC SMouC YLoL W 2010 Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics Angew. Chem. 122 8390 8395 8390–5 10.1002/ange.201002639
  • LiuRZhangYZhaoXAgarwalAMuellerL JFengP 2010 pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker J. Am. Chem. Soc. 132 1500 1501 1500–1 10.1021/ja907838s
  • GanQLuXYuanYQianJZhouHLuXShiJLiuC 2011 A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica Biomaterials 32 1932 1942 1932–42 10.1016/j.biomaterials.2010.11.020
  • AznarEMarcosM DMartiánez-MaánñezR NSancenónFSotoJAmoroásPGuillemC 2009 pH-and photo-switched release of guest molecules from mesoporous silica supports J. Am. Chem. Soc. 131 6833 6843 6833–43 10.1021/ja810011p
  • GaoCZhengHXingLShuMCheS 2010 Designable coordination bonding in mesopores as a pH-responsive release system Chem. Mater. 22 5437 5444 5437–44 10.1021/cm100667u
  • PopatALiuJLuG Q MQiaoS Z 2012 A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles J. Mater. Chem. 22 11173 11178 11173–8 10.1039/c2jm30501a
  • ChenFZhuY 2012 Chitosan enclosed mesoporous silica nanoparticles as drug nano-carriers: sensitive response to the narrow pH range Micropor. Mesopor. Mater. 150 83 89 83–9 10.1016/j.micromeso.2011.07.023
  • TangHGuoJSunYChangBRenQYangW 2011 Facile synthesis of pH sensitive polymer-coated mesoporous silica nanoparticles and their application in drug delivery Int. J. Pharm. 421 388 396 388–96 10.1016/j.ijpharm.2011.10.013
  • MuhammadFGuoMQiWSunFWangAGuoYZhuG 2011 pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids J. Am. Chem. Soc. 133 8778 8781 8778–81 10.1021/ja200328s
  • SchaferF QBuettnerG R 2001 Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple Free Radi. Biol. Med. 30 1191 1212 1191–212 10.1016/S0891-5849(01)00480-4
  • WuGFangY-ZYangSLuptonJ RTurnerN D 2004 Glutathione metabolism and its implications for health J. Nutr. 134 489 492 489–92
  • ArunachalamBPhanU TGeuzeH JCresswellP 2000 Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT) Proc. Nat. Acad. Sci. 97 745 750 745–50 10.1073/pnas.97.2.745
  • TrachoothamDAlexandreJHuangP 2009 Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature reviews. Drug Disc. 8 579 591 579–91 10.1038/nrd2803
  • LuoZCaiKHuYZhaoLLiuPDuanLYangW 2011 Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery Angew. Chem. Int. Edn. 50 640 643 640–3 10.1002/anie.201005061
  • CuiYDongHCaiXWangDLiY 2012 Mesoporous silica nanoparticles capped with disulfide-linked peg gatekeepers for glutathione-mediated controlled release ACS Appl. Mater. Interfaces 4 3177 3183 3177–83 10.1021/am3005225
  • KimHKimSParkCLeeHParkH JKimC 2010 Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers Adv. Mater. 22 4280 4283 4280–3 10.1002/adma.201001417
  • ZhangQLiuFNguyenK TMaXWangXXingBZhaoY 2012 Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery Adv. Funct. Mater. 22 5144 5156 5144–56 10.1002/adfm.201201316
  • SauerA MSchlossbauerARuthardtNCaudaVBeinTBraäuchleC 2010 Role of endosomal escape for disulfide-based drug delivery from colloidal mesoporous silica evaluated by live-cell imaging Nano Lett. 10 3684 3691 3684–91 10.1021/nl102180s
  • ZongSWangZChenHYangJCuiY 2013 Surface enhanced Raman scattering traceable and glutathione responsive nanocarrier for the intracellular drug delivery Anal. Chem. 85 2223 2230 2223–30 10.1021/ac303028v
  • ZhuC-LSongX-YZhouW-HYangH-HWenY-HWangX-R 2009 An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates J. Mater. Chem. 19 7765 7770 7765–70 10.1039/b907978e
  • WanXWangDLiuS 2010 Fluorescent pH-sensing organic/inorganic hybrid mesoporous silica nanoparticles with tunable redox-responsive release capability Langmuir 26 15574 15579 15574–9 10.1021/la102148x
  • DavisJ JHuangW-YDaviesG-L 2012 Location-tuned relaxivity in Gd-doped mesoporous silica nanoparticles J. Mater. Chem. 22 22848 22850 22848–50 10.1039/c2jm35116a
  • CarniatoFTeiLCossiMMarcheseLBottaM 2010 A chemical strategy for the relaxivity enhancement of GdIII chelates anchored on mesoporous silica nanoparticles Chemistry-A Eur. J. 16 10727 10734 10727–34 10.1002/chem.201000499
  • LinW-ILinC-YLinY-SWuS-HHuangY-RHungYChangCMouC-Y 2013 High payload Gd (iii) encapsulated in hollow silica nanospheres for high resolution magnetic resonance imaging J. Mater. Chem. B 1 639 645 639–45 10.1039/c2tb00283c
  • LiuJBuWZhangSChenFXingHPanLZhouLPengWShiJ 2012 Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging Chemistry-A Eur. J. 18 2335 2341 2335–41 10.1002/chem.201102599
  • Guillet-NicolasRBridotJ LSeoYFortinM AKleitzF 2011 Enhanced relaxometric properties of MRI ‘Positive’ contrast agents confined in three-dimensional cubic mesoporous silica nanoparticles Adv. Funct. Mater. 21 4653 4662 4653–62 10.1002/adfm.201101766
  • KimTMominEChoiJYuanKZaidiHKimJParkMLeeNMcMahonM TQuinones-HinojosaA 2011 Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T 1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells J. Am. Chem. Soc. 133 2955 2961 2955–61 10.1021/ja1084095
  • ChenYYinQJiXZhangSChenHZhengYSunYQuHWangZLiY 2012 Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells Biomaterials 33 7126 7137 7126–37 10.1016/j.biomaterials.2012.06.059
  • ChenP-JHuS-HHsiaoC-SChenY-YLiuD-MChenS-Y 2011 Multifunctional magnetically removable nanogated lids of Fe3O4–capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging J. Mater. Chem. 21 2535 2543 2535–43 10.1039/c0jm02590a
  • LeeJ ELeeNKimHKimJChoiS HKimJ HKimTSongI CParkS PMoonW K 2009 Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery J. Am. Chem. Soc. 132 552 557 552–7 10.1021/ja905793q
  • ChenYChenHZengDTianYChenFFengJShiJ 2010 Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery ACS Nano 4 6001 6013 6001–13 10.1021/nn1015117
  • ThomasC RFerrisD PLeeJ-HChoiEChoM HKimE SStoddartJ FShinJ-SCheonJZinkJ I 2010 Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles J. Am. Chem. Soc. 132 10623 10625 10623–5 10.1021/ja1022267
  • BaezaAGuisasolaERuiz-HernaándezEVallet-RegiáM a 2012 Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles Chem. Mater. 24 517 524 517–24 10.1021/cm203000u
  • BringasEKöysürenÖQuachD VMahmoudiMAznarERoehlingJ DMarcosM DMartínez-MáñezRStroeveP 2012 Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field Chem. Commun. 48 5647 5649 5647–9 10.1039/c2cc31563g
  • SchrandAHensS A CShenderovaO 2009 Nanodiamond particles: properties and perspectives for bioapplications Crit. Rev. Solid State Mater. Sci. 34 18 74 18–74 10.1080/10408430902831987
  • CaoLWangXMezianiM JLuFWangHLuoP GLinYHarruffB AVecaMMurrayDXieS YSunY P 2007 Carbon dots for multiphoton bioimaging J. Am. Chem. Soc. 129 11318 11319 11318–19 10.1021/ja073527l
  • YangKZhangSZhangGSunXLeeS TLiuZ 2010 Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy Nano Lett. 10 3318 3323 3318–23 10.1021/nl100996u
  • KimJ WGalanzhaE IShashkovE VMoonH MZharovV P 2009 Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents Nature Nanotechnol. 4 688 694 688–94 10.1038/nnano.2009.231
  • MrozPTegosG PGaliHWhartonTSarnaTHamblinM R 2007 Photodynamic therapy with fullerenes Photochem. Photobiol. Sci. 6 1139 1149 1139–49 10.1039/b711141j
  • HuangHPierstorffEOsawaEHoD 2008 Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm ACS Nano 2 203 212 203–12 10.1021/nn7000867
  • LiuXTaoHYangKZhangSLeeS TLiuZ 2011 Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors Biomaterials 32 144 151 144–51 10.1016/j.biomaterials.2010.08.096
  • JiaNLianQShenHWangCLiXYangZ 2007 Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes Nano Lett. 7 2976 2980 2976–80 10.1021/nl071114c
  • LamRChenMPierstorffEHuangHOsawaEHoD 2008 Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution ACS Nano 2 2095 2102 2095–102 10.1021/nn800465x
  • KimT WChungP WSlowingI ITsunodaMYeungE SLinV S 2008 Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells Nano Lett. 8 3724 3727 3724–27 10.1021/nl801976m
  • BhirdeA APatelVGavardJZhangGSousaA AMA.LeapmanR DWeigertRGutkindJ SRuslingJ F 2009 Targeted killing of cancer cells in Vivo and in Vitro with EGF ACS Nano 3 307 316 307–16 10.1021/nn800551s
  • KrotoH WHeathJ RO'BriemS CCurlR FSmalleyR E 1985 C-60: Buckminsterfullerene Nature 318 162 163 162–63 10.1038/318162a0
  • IijimaS 1991 HELICAL Microtubules of graphitic carbon Nature 354 56 58 56–8 10.1038/354056a0
  • BaughmanR HZakhidovA Ade HeerW A 2002 Carbon nanotubes—the route toward applications Science 297 787 792 787–92 10.1126/science.1060928
  • GeimA KNovoselovK S 2007 the rise of graphene Nature Mater. 6 183 191 183–91 10.1038/nmat1849
  • ZhangYNayakT RHongHCaiW 2012 Graphene: a versatile nanoplatform for biomedical applications Nanoscale 4 3833 3842 3833–42 10.1039/c2nr31040f
  • YangKFengLShiXLiuZ 2013 Nano-graphene in biomedicine: theranostic applications Chem. Soc. Rev. 42 530 547 530–47 10.1039/c2cs35342c
  • XuXRayRGuYPloehnH JGearheartLRakerKScrivensW A 2004 Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments J. Am. Chem. Soc. 126 12736 12737 12736–7 10.1021/ja040082h
  • LiuHYeTMaoC 2007 Fluorescent carbon nanoparticles derived from candle soot Angew. Chem. Int. Edn Engl. 46 6473 6475 6473–5 10.1002/anie.200701271
  • RayS CSahaAJanaN RSarkarR 2009 Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application J. Phys. Chem. C 113 18546 18551 18546–51 10.1021/jp905912n
  • KamN W SLiuZ ADaiH J 2006 Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway Angew. Chem. Int. Edn. Engl. 45 577 581 577–81 10.1002/anie.200503389
  • KatzEWillnerI 2004 Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics ChemPhysChem 5 1084 1104 1084–104 10.1002/cphc.200400193
  • FriebelMMeinkeM 2005 Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements J. Biomed. opt. 10 064019 10.1117/1.2138027
  • ShiDGuoYDongZLianJWangWLiuGWangLEwingR C 2007 Quantum-dot-activated luminescent carbon nanotubes via a nano scale surface functionalization for in vivo imaging Adv. Mater. 19 4033 4037 4033–7 10.1002/adma.200700035
  • WelsherKLiuZDaraciangDDaiH 2008 Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules Nano Lett. 8 586 590 586–90 10.1021/nl072949q
  • de la ZerdaALiuZBodapatiSTeedRVaithilingamSKhuri-YakubB TChenXDaiHGambhirS S 2010 Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice Nano Lett. 10 2168 2172 2168–72 10.1021/nl100890d
  • GuoYet al 2008 In vivo imaging and drug storage by quantum-dot-conjugated carbon nanotubes Adv. Funct. Mater. 18 2489 2497 2489–97 10.1002/adfm.200800406
  • HartmanK BLausSBolskarR DMuthupollaiRHelmLTothEMebrachA EWilsonL J 2008 Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging Nano Lett. 8 415 419 415–19 10.1021/nl0720408
  • HeisterENevesVTîlmaciuCLipertKBeltránV SColeyH MSilvaS R PMcFaddenJ 2009 Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy Carbon 47 2152 2160 2152–60 10.1016/j.carbon.2009.03.057
  • ChenJChenSZhaoXKuznetsovaL VWongS SOjimaL 2008 Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery J. Am. Chem. Soc. 130 16778 16785 16778–85 10.1021/ja805570f
  • DharSLiuZThomaleJDaiHLippardS J 2008 Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device J. Am. Chem. Soc. 130 11467 11476 11467–76 10.1021/ja803036e
  • LiuZSunXRatchfordN NDaiH 2007 Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery ACS Nano 1 50 56 50–6 10.1021/nn700040t
  • LiRWuRZhaoLWuMYangLZouH 2010 P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells ACS Nano 4 1399 1408 1399–408 10.1021/nn9011225
  • GhoshSDuttaSGnomesECarrollDJrR DOlsonJGutholdMGmeinerW H 2009 Increased heating efficiency and selective thermal ablation of malignant tissue with dna-encased multiwalled carbon nanotubes ACS Nano 3 2667 2673 2667–73 10.1021/nn900368b
  • MoonH KLeeS HChoiH C 2009 In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes ACS Nano 3 3707 3713 3707–13 10.1021/nn900904h
  • ChakravartyPMarchesRZimmermanN SSwaffordA DBajajPMusselmanI HPantanoPDraperR KVitettaE S 2008 Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes Proc. Natl Acad. Sci. USA 105 8697 8702 8697–702 10.1073/pnas.0803557105
  • CarlsonL JKraussT D 2008 Photophysics of individual single-walled carbon nanotubes Acc. Chem. Res. 41 235 243 235–43 10.1021/ar700136v
  • RobinsonJ TWelsherKTabakmanS MSherlockS PWangHLuongRDaiH 2010 High performance in vivo near-IR (> 1 mum) imaging and photothermal cancer therapy with carbon nanotubes Nano Research 3 779 793 779–93 10.1007/s12274-010-0045-1
  • ZhouFXingDOuZWuBResascoD EChenW R 2009 Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes J. Biomed. Opt. 14 021009 10.1117/1.3078803
  • KlingelerRHampelSBuchnerB 2008 Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery Int. J. Hyperth. 24 496 505 496–505 10.1080/02656730802154786
  • HatakeyamaHAkitaHKogureKOishiMNagasakiYKihiraYUenoMKobayashiHKikuchiHHarashimaH 2007 Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid Gene Ther. 14 68 77 68–77 10.1038/sj.gt.3302843
  • MorilleMPassiraniCVonarbourgAClavreulABenoitJ P 2008 Progress in developing cationic vectors for non-viral systemic gene therapy against cancer Biomaterials 29 3477 3496 3477–96 10.1016/j.biomaterials.2008.04.036
  • WaehlerRRussellS JCurielD T 2007 Engineering targeted viral vectors for gene therapy Nature Rev. Genetics 8 573 587 573–87 10.1038/nrg2141
  • Ferrer-MirallesNVazquezEVillaverdeA 2008 Membrane-active peptides for non-viral gene therapy: making the safest easier Trends Biotechnol. 26 267 275 267–75 10.1016/j.tibtech.2008.02.003
  • DassC RChoongP F 2006 Selective gene delivery for cancer therapy using cationic liposomes: in vivo proof of applicability J. Control. Release 113 155 163 155–63 10.1016/j.jconrel.2006.04.009
  • HerreroM ATomaF MAl-jamalK TKosrarelosKBiancoARosT DBanoFCasalisLScolesGPratoM 2009 Synthesis and characterization of a carbon nanotube-dendron series for efficient siRNA delivery J. Am. Chem. Soc. 131 9843 9848 9843–48 10.1021/ja903316z
  • YangXZhangXMaYHuangYWangYChenY 2009 Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers J. Mater. Chem. 19 2710 10.1039/b821416f
  • LuC HZhuC LLiJLiuJ JChenXYangH H 2010 Using graphene to protect DNA from cleavage during cellular delivery Chem. Commun. (Camb.) 46 3116 3118 3116–8 10.1039/b926893f
  • MarkovicZ MHarhaji-TrajkovicL MTodorovic-MarkovicB MKepicD PArsikinK MJovanovicS PPantovicA CDramicaninM DTrajkovicV S 2011 In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes Biomaterials 32 1121 1129 1121–9 10.1016/j.biomaterials.2010.10.030
  • RobinsonJ TTabakmanS MLiangYWangHCasalongueH SVinhDDaiH 2011 Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy J. Am. Chem. Soc. 133 6825 6831 6825–31 10.1021/ja2010175
  • YangXWangYHuangXMaYHuangYYangRDuanHChenY 2011 Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity J. Mater. Chem. 21 3448 10.1039/c0jm02494e
  • BottiniMBalasubramanianCDawsonM IBergamaschiABellucciSMustelinT 2006 Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes J. Phys. Chem. B 110 831 836 831–6 10.1021/jp055503b
  • FangYGuoSLiDZhuCRenWDongSWangE 2012 Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles ACS Nano 6 400 409 400–9 10.1021/nn2046373
  • SunY Pet al 2006 Quantum-sized carbon dots for bright and colorful photoluminescence J. Am. Chem. Soc. 128 7756 7757 7756–7 10.1021/ja062677d
  • HuangHPierstorffEOsawaEHoD 2007 Active nanodiamond hydrogels for chemotherapeutic delivery Nano Lett. 7 3305 3314 3305–14 10.1021/nl071521o
  • ChenMPierstorffE DLamRLiS YHuangHOsawaEHoD 2009 Nanodiamond-mediated delivery of water-insoluble therapeutics ACS Nano 3 2016 2022 2016–22 10.1021/nn900480m
  • ZhangX QChenMLamRXuXOsawaEHoD 2009 Polymer-functionalized nanodiamond platforms as vehicles for gene delivery ACS Nano 3 2609 2616 2609–16 10.1021/nn900865g
  • ZhaoQ-LZhangZ-LHuangB-HPengJZhangMPangD-W 2008 Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite Chem. Commun. (Camb.) 5116 5118 5116–8 10.1039/b812420e
  • ZhangSHeQLiRWangQHuZLiuXChangX 2011 Study on the fluorescence carbon nanoparticles Mater. Lett. 65 2371 2373 2371–3 10.1016/j.matlet.2011.05.025
  • LuWQinXLiuSChangGZhangYLuoYAsiriA MAl-YoubiA OSunX 2012 Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions Anal. Chem. 84 5351 5357 5351–7 10.1021/ac3007939
  • MrozPPawlakASattiMLeeHWhartonTGaliHSarnaTHamblinM R 2007 Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism Free Rad. Biol. Med. 43 711 719 711–9 10.1016/j.freeradbiomed.2007.05.005
  • ShanbhagP PJogS VChogaleM MGaikwadS S 2013 Theranostics for cancer therapy Curr. Drug. Deliv. 10 357 362 357–62 10.2174/1567201811310030013
  • PovoskiS PHatzarasI SMojzisikC MMartinE WJr. 2011 Oncologic theranostics: recognition of this concept in antigen-directed cancer therapy for colorectal cancer with anti-TAG-72 monoclonal antibodies Expert Rev. Mol. Diagn. 11 667 670 667–70 10.1586/erm.11.54
  • OmidiY 2011 Smart multifunctional theranostics: simultaneous diagnosis and therapy of cancer Bioimpacts 1 145 147 145–7
  • ChenWXuNXuLWangLLiZMaWZhuYXuCKotovN A 2010 Multifunctional magnetoplasmonic nanoparticle assemblies for cancer therapy and diagnostics (theranostics) Macromol. Rapid Commun. 31 228 236 228–36
  • BanghamA DStandishM MWatkinsJ C 1965 Diffusion of univalent ions across the lamellae of swollen phospholipids J. Mol. Biol. 13 238 252 238–52 10.1016/S0022-2836(65)80093-6
  • TorchilinV 2009 Multifunctional and stimuli-sensitive pharmaceutical nanocarriers Eur. J. Pharm. Biopharm. 71 431 444 431–44 10.1016/j.ejpb.2008.09.026
  • LangerRFolkmanJ 1976 Polymers for the sustained release of proteins and other macromolecules Nature 263 797 800 797–800 10.1038/263797a0
  • HarriesMEllisPHarperP 2005 Nanoparticle albumin-bound paclitaxel for metastatic breast cancer J. Clin. Oncol. 23 7768 7771 7768–71 10.1200/JCO.2005.08.002
  • KhoeeSRahmatolahzadehR 2012 Synthesis and characterization of pH-responsive and folated nanoparticles based on self-assembled brush-like PLGA/PEG/AEMA copolymer with targeted cancer therapy properties: a comprehensive kinetic study Eur. J. Med. Chem. 50 416 427 416–27 10.1016/j.ejmech.2012.02.027
  • AsteteC ESabliovC M 2006 Synthesis and characterization of PLGA nanoparticles J. Biomater. Sci. Polym. Ed. 17 247 289 247–89 10.1163/156856206775997322
  • KlibanovA LMaruyamaKTorchilinV PHuangL 1990 Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes FEBS Lett. 268 235 237 235–7 10.1016/0014-5793(90)81016-H
  • PapahadjopoulosDet al 1991 Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy Proc. Natl Acad. Sci. USA 88 11460 11464 11460–4 10.1073/pnas.88.24.11460
  • LiuZRobinsonJ TSunXDaiH 2008 PEGylated nanographene oxide for delivery of water-insoluble cancer drugs J. Am. Chem. Soc. 130 10876 10877 10876–77 10.1021/ja803688x
  • BuningH 2013 Gene therapy enters the pharma market: the short story of a long journey EMBO Mol. Med. 5 1 3 1–3 10.1002/emmm.201202291
  • WenYPanSLuoXZhangXZhangWFengM 2009 A biodegradable low molecular weight polyethylenimine derivative as low toxicity and efficient gene vector Bioconjug. Chem. 20 322 332 322–32 10.1021/bc800428y
  • Cavazzana-CalvoMet al 2000 Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease Science 288 669 672 669–72 10.1126/science.288.5466.669
  • ThomasC EEhrhardtAKayM A 2003 Progress and problems with the use of viral vectors for gene therapy Nature Rev. Genetics 4 346 358 346–58 10.1038/nrg1066
  • FarokhzadO CLangerR 2006 Nanomedicine: developing smarter therapeutic and diagnostic modalities Adv. Drug. Deliv. Rev. 58 1456 1459 1456–9 10.1016/j.addr.2006.09.011
  • AndersonD GPengWAkincAHossainNKohnAPaderaRLangerRSawickiJ A 2004 A polymer library approach to suicide gene therapy for cancer Proc. Natl Acad. Sci. USA 101 16028 16033 16028–33 10.1073/pnas.0407218101
  • Maurer-JonesM AHaynesC L 2012 Toward correlation in in vivo and in vitro nanotoxicology studies J. Law Med. Ethics 40 795 801 795–801
  • Maurer-JonesM ABantzK CLoveS AMarquisB JHaynesC L 2009 Toxicity of therapeutic nanoparticles Nanomedicine 4 219 241 219–41 10.2217/17435889.4.2.219
  • Slowing,IIWuC WVivero-EscotoJ LLinV S 2009 Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells Small 5 57 62 57–62 10.1002/smll.200800926
  • LinY SHaynesC L 2009 Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles Chem. Mater. 21 3979 3986 3979–86 10.1021/cm901259n
  • JiS RLiuCZhangBYangFXuJLongJJinCFuD LNiQ XYuX J 2010 Carbon nanotubes in cancer diagnosis and therapy Biochim. Biophys. Acta. 1806 29 35 29–35
  • HanS-oMahatoR IKimS W 2001 Water-soluble lipopolymer for gene delivery Bioconjug. Chem. 12 337 345 337–45 10.1021/bc000120w
  • De la ZerdaAet al 2008 Carbon nanotubes as photoacoustic molecular imaging agents in living mie Nature Nanotechnol. 3 557 562 557–62 10.1038/nnano.2008.231
  • ZavaletaCZerdaA D LLiuSKerenSChengZSchipperMChenXDaiHGambhirS S 2008 Noninvasive raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes Nano Lett. 8 2800 2805 2800–05 10.1021/nl801362a
  • ShiXWangS HShenMAntwerpM EChenXLiCPetersenE JHuangQWeberW JJrBakerJ RJr 2009 Multifunctional dendrimer-modified multiwalled carbon nanotubes synthesis, characterization and in vitro cancer cell targeting and imaging Biomacromolecules 10 1744 1750 1744–50 10.1021/bm9001624
  • WuWLiRBianXZhuZDingDLiXJiaZJiangXHuY 2009 Covalently combining carbon nanotubes with anticancer agent preparation and antitumor activity ACS Nano 3 2740 2750 2740–50 10.1021/nn9005686
  • ZhangXMengLLuQFeiZDysonP J 2009 Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes Biomaterials 30 6041 6047 6041–7 10.1016/j.biomaterials.2009.07.025
  • LiuZFanA CRakhraKSherlockSGoodwinAChenXYangQFelsherD WDaiH 2009 Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy Angew. Chem. Int. Edn. Engl. 48 7668 7672 7668–72 10.1002/anie.200902612
  • FeazellR PRatchfordN NDaiHLippardS J 2007 Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design J. Am. Chem. Soc. 129 8438 8439 8438–39 10.1021/ja073231f
  • Ali-BoucettaHAl-JamalK TMcCarthyDPratoMBiancoAKostarelosK 2008 Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics Chem. Commun. (Camb.) 459 461 459–61 10.1039/b712350g
  • KimJ WShashkovE VGalanzhaE IKotagiriNZharovV P 2007 Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters Lasers Surg. Med. 39 622 634 622–34 10.1002/lsm.20534
  • GannonC Jet al 2007 Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field Cancer 110 2654 2665 2654–65 10.1002/cncr.23155