1,080
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Towards sensor array materials: can failure be delayed?

, , &
Article: 034607 | Received 29 Dec 2014, Accepted 10 Apr 2015, Published online: 02 Jun 2015

References

  • SundaresanM JSchulzM J 2001 A neural system for structural health monitoring, sensory phenomena and measurement instrumentation for smart structures and materials Proc. SPIE 4328 130 141 130–41 10.1117/12.435516
  • MekidSKwonO 2009 Nervous materials: a new approach of using advanced materials for better control, reliability and safety of structures Sci. Adv. Mater. 1 276 285 276–85 10.1166/sam.2009.1055
  • MeasuresR M 1989 Smart structures with nerves of glass Prog. Aerosp. Sci. 26 289 351 289–351 10.1016/0376-0421(89)90009-2
  • SharpJKuntzABrubakerCAmosSGaoWGuptaGMohiteAFarrarCMascarenasD 2014 A bio-inspired asynchronous skin system for crack detection applications Smart Mater. Struct. 23 055020 10.1088/0964-1726/23/5/055020
  • Jeong-BeomIChangF K 2008 Pitch-catch active sensing methods in structural health monitoring for aircraft structures Struct. Health Monit. 7 5 19 5–19 10.1177/1475921707081979
  • HotateK 2008 Fiber optic nerve systems for smart materials and smart structures Microwave Photon. 31 31 34 31–4 10.1109/MWP.2008.4666627
  • UbertiniFLaflammeSCeylanHMaterazziA LCerniGSaleemHD’AlessandroACorradiniA 2014 Novel nanocomposite technologies for dynamic monitoring of structures: a comparison between cement-based embeddable and soft elastomeric surface sensors Smart Mater. Struct. 23 045023 10.1088/0964-1726/23/4/045023
  • BudelmannCKrieg-BrucknerB 2012 From sensorial to smart materials: Intelligent optical sensor network for embedded applications J. Intell. Mater. Syst. Struct. 24 2183 2188 2183–8 10.1177/1045389X12462647
  • LangWJakobsFTolstosheevaESturmHIbragimovAKeselALehmhusDDickeU 2011 From embedded sensors to sensorial materials—the road to function scale integration Sensors Actuators A Phys. 171 3 11 3–11 10.1016/j.sna.2011.03.061
  • UddE 1996 Fiber optic smart structures Proc. IEEE 84 60 67 60–7 10.1109/5.480737
  • GüemesAFernandez-LopezAHernandez-CrespoB 2013 Monitoring damage growth in composite materials by FBG sensors Proc. 5th Int. Conf. on NDT in Aerospace Singapore
  • WuCZhangYGuanB O 2011 Simultaneous measurement of temperature and hydrostatic pressure using Bragg gratings in standard and grapefruit microstructured fibers IEEE Sens. J. 11 489 492 489–92 10.1109/JSEN.2010.2068045
  • GuoHXiaoGMradNYaoJ 2011 Fiber optic sensors for structural health monitoring of air platforms Sensors 11 3687 3705 3687–705 10.3390/s110403687
  • YoshinoTKurosawaKItohKOseT 1982 Fiber-optic Fabry–Perot interferometer and its sensor applications IEEE J. Quant. Elect. 04 626 665 626–65 10.1109/JQE.1982.1071445
  • PhilenDWhiteIKuhlJMettlerS 2003 Single-mode fiber OTDR: experiment and theory IEEE J. Quant. Elect. 18 1499 1508 1499–508 10.1109/JQE.1982.1071408
  • SpiritD MBlankL C 2002 Raman-assisted long-distance optical time domain reflectometry Elect. Lett. 25 1687 1689 1687–9 10.1049/el:19891128
  • BaoXWebbD JJacksonD A 1993 32 -km distributed temperature sensor based on Brillouin loss in an optical fiber Opt. Lett. 18 1561 1563 1561–3 10.1364/OL.18.001561
  • MajumderMGangopadhyayT KChakrabortyA KDasguptaKBhattacharyaD K 2008 Fibre Bragg gratings in structural health monitoring—present status and applications Sensors Actuators A 147 150 164 150–64 10.1016/j.sna.2008.04.008
  • MinakuchiSTakedaN 2013 Recent advancement in optical fiber sensing for aerospace composite structures Photonic Sensors 3 345 354 345–54 10.1007/s13320-013-0133-4
  • KeiserG 2000 Optical Fiber Communications 3rd edn Singapore McGraw-Hill
  • FernandoG F 2005 Fibre optic sensor systems for monitoring composite structures RP Asia 2005 Conf. in Bangkok (25–26 August) 41 49 pp 41–9
  • OthonosAKalliK 1999 Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing New York Artech House
  • LuyckxGVoetELammensNDegrieckJ 2011 Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research Sensors 11 384 408 384–408 10.3390/s110100384
  • KinetDMégretPGoossenK WQiuLHeiderDCaucheteurC 2014 Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions Sensors 14 7394 7419 7394–419 10.3390/s140407394
  • RajanGRamakrishnanMSemenovaYAmbikairajahEFarrellGPengG D 2014 Experimental study and analysis of a polymer fiber Bragg grating embedded in a composite material J. Lightwave Technol. 32 1726 1733 1726–33 10.1109/JLT.2014.2311441
  • ChenXZhangCWebbD JPengG DKalliK 2010 Bragg grating in a polymer optical fibre for strain, bend and temperature sensing Meas. Sci. Technol. 21 094005 10.1088/0957-0233/21/9/094005
  • RajanGNoorY MLiuBAmbikairajaEWebbD JPengG D 2013 A fast response intrinsic humidity sensor based on an etched single mode polymer fiber Bragg grating Sensors Actuators A 203 107 111 107–11 10.1016/j.sna.2013.08.036
  • LiYLiuWFengYZhangH 2012 Ultrasonic embedding of nickel-coated fiber Bragg grating in aluminum and associated sensing characteristics Optical Fiber Technol. 18 7 13 7–13 10.1016/j.yofte.2011.09.004
  • LiXJohnsenJGrozaJPrinzF 2002 Processing and microstructures of fiber Bragg grating sensors embedded in stainless steel Metallurg. Mater. Trans. A: Phys. Metallurg. Mater. Sci. 33 3019 3024 3019–24 10.1007/s11661-002-0286-z
  • KumarJBajpaiR 2012 Application of MEMS in bridge structures health monitoring Int. J. Engin. Innov. Technol. 2 103 106 103–6
  • SpencerB FRuiz-SandovalM EKurataN 2004 Smart sensing technology: opportunities and challenges Struct. Control Health Monit. 11 349 368 349–68 10.1002/stc.48
  • LohK JLynchJ PKotovN A 2008 Passive wireless sensing using SWNT-based multifunctional thin film patches Int. J. Appl. Electromag. Mechan. 28 87 94 87–94
  • LynchJ P 2006 A Summary review of wireless sensors and sensor networks for structural health monitoring Shock Vib. Dig. 38 91 128 91–128 10.1177/0583102406061499
  • GrauerFFilipovicDPfoertnerH 2003 Application of MEMS in turbomachinery environment NATO/RTO AVT-099 Symp. on Novel and Emerging Vehicle and Vehicle Technology Concepts (Part A) (Brussels, April 2003)
  • KangISchulzM JKimJ HShanovVShiD 2006 A carbon nanotube strain sensor for structural health monitoring Smart Mater. Struct. 15 737 748 737–48 10.1088/0964-1726/15/3/009
  • VaradanV KVinoyK J 2006 Smart Material Systems and MEMS: Design and Development Methodologies Chichester Wiley
  • LinBGiurgiutiuVYuanZLiuJChenC LJiangJ CBhallaA SGuoR Y 2007 Ferroelectric thin-film active sensors for structural health monitoring Proc. SPIE 6529 U188 U195 U188–95
  • BogueR 2012 Smart materials : a review of recent developments Assem. Autom. 32 3 7 3–7 10.1108/01445151211198674
  • ZagraiA N 2002 Piezoelectric wafer active sensor electromechanical impedance structural health monitoring PhD Dissertation University of South Carolina
  • HoM-PLauK-tAuH-YDongYTamH-Y 2013 Structural health monitoring of an asymmetrical SMA reinforced composite using embedded FBG sensors Smart Mater. Struct. 22 125015 10.1088/0964-1726/22/12/125015
  • LuyckxGVoetELammensNDegrieckJ 2011 Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research Sensors 11 384 408 384–408 10.3390/s110100384
  • MillerW SZhuangLBottemaJWittebroodA JDe SmetPHaszlerAViereggeA 2000 Recent development in aluminium alloys for the automotive industry Mater. Sci. Eng. A 280 37 49 37–49 10.1016/S0921-5093(99)00653-X
  • DursunTSoutisC Recent developments in advanced aircraft aluminium alloys Materials and Design 56 862 871 862–71 10.1016/j.matdes.2013.12.002
  • ZhangX 2013 Sensitivity alteration of fiber Bragg grating sensors through on-fiber metallic coatings produced by a combined laser-assisted maskless microdeposition and electroless plating process MS Thesis University of Waterloo
  • RaoCZhangHFengY 2013 Effect of metalizing nickel on the spectrum of fiber Bragg grating Opt. Eng. 52 054404 10.1117/1.OE.52.5.054404
  • KongC YSoarR 2005 Method for embedding optical fibers in an aluminum matrix by ultrasonic consolidation Appl. Opt. 44 6325 6333 6325–33 10.1364/AO.44.006325
  • AlemohammadHToyserkaniE 2011 Metal embedded optical fiber sensors: laser-based layered manufacturing procedures J. Manuf. Sci. Eng. 133 031015 10.1115/1.4004203
  • SahebNIqbalZKhalilAHakeemA SAl-AqeeliNLaouiTQutubAKirchnerR 2012 Spark plasma sintering of metals and metal matrix nanocomposites: A review J. Nanomater. 1 983470 10.1155/2012/983470
  • KimS-WJeongM-SLeeIKwonI-B 2014 Static mechanical characteristics of tin-coated fiber Bragg grating sensors Sensors Actuators A 214 156 162 156–62 10.1016/j.sna.2014.03.023
  • GaoYDoumanidisC 2002 Mechanical analysis of ultrasonic bonding for rapid prototyping J. Manuf. Sci. Eng. 124 426 434 426–34 10.1115/1.1459082
  • DoumanidisCGaoY 2004 Mechanical analysis of ultrasonic welding Welding J. 4 140 146 140–6
  • DingYKimJPinT 2006 Numerical analysis of ultrasonic wire bonding: effects of bonding parameters on contact pressure and frictional energy Mech. Mater. 3811 3824 3811–24 10.1016/j.mechmat.2005.05.007
  • DingYKimJ 2008 Numerical analysis of ultrasonic wire bonding: 2. Effects of bonding parameters on temperature rise Microelectron. Rel. 48 149 157 149–57 10.1016/j.microrel.2007.01.083
  • SiddiqAGhassemiehE 2011 Fibre embedding in aluminium alloy 3003 using ultrasonice consolidation process-thermo-mechanical analyses Int. J. Adv. Manuf. Technol. 54 997 1009 997–1009 10.1007/s00170-010-3007-6
  • SiddiqAGhassemiehE 2011 Finite element analysis of ultrasonic insertion of SiC fibre in aluminium alloy 6061 Int. J. Mater. Engrg. Innov. 2 182 202 182–202 10.1504/IJMATEI.2011.042876
  • ChabocheJ L 1989 Constitutive equations for cyclic plasticity and cyclic viscoplasticity Int. J. Plast. 5 247 302 247–302 10.1016/0749-6419(89)90015-6
  • KongC YSoarR C 2005 Fabrication of metal-matrix composites and adaptive composites using ultrasonic consolidation process Mater. Sci. Eng. A 412 12 18 12–8 10.1016/j.msea.2005.08.041
  • KongC YSoarR CDickensP M 2004 Ultrasonic consolidation for embedding SMA fibres within aluminium materices Comp. Struct. 66 421 427 421–7 10.1016/j.compstruct.2004.04.064
  • MouCSaffariPLiDZhouKZhangLSoarR CBennionI 2009 Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation Meas. Sci. Technol. 20 034013 10.1088/0957-0233/20/3/034013
  • ChengXLiX 2007 Investigation of heat generation in ultrasonic metal welding using micro sensor arrays J. Micromech. Microeng. 17 273 282 273–82 10.1088/0960-1317/17/2/013
  • NakasoneYNishiyamaHNojiriT 2000 Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes Mater. Sci. Eng. A 285 229 238 229–38 10.1016/S0921-5093(00)00637-7
  • SchjodtJPyrzR 2005 Cubic inclusion arrangement: effects on stress and effective properties Comput. Mater. Sci. 34 129 139 129–39 10.1016/j.commatsci.2004.12.061
  • ZhengXXuX 1999 Stress analysis of finite composite laminates with elliptical inclusion Comput. Struct. 70 357 361 357–61 10.1016/S0045-7949(98)00149-7
  • MurakiYKodamaSKonumaS 1989 Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels: I. Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions Int. J. Fatigue 11 291 298 291–8 10.1016/0142-1123(89)90054-6
  • KuoC 2008 Contact stress analysis of an elastic half-plane containing multiple inclusions Int. J. Solids Struct. 45 4562 4573 4562–73 10.1016/j.ijsolstr.2008.03.032
  • El KhannoussiFHajraouiAKhamlichiAElbakariADkiouakRJacquelinELimanA 2010 Reconstruction of a distributed force impacting an elastic rectangular plate J. Basic Appl. Sci. Res. 1 20 30 20–30
  • UngethuemALammeringR 2011 Impact and damage localization of carbon-fibre-reinforced plastic plates Proc. Appl. Math Mech. 11 639 640 639–40 10.1002/pamm.201110309
  • KimJWangK W 2014 An enhanced impedance-based damage identification method using adaptive piezoelectric circuitry Smart Mater. Struct. 23 095041 10.1088/0964-1726/23/9/095041
  • WangDSongHZhuH 2014 Embedded 3D electromechanical impedance model for strength monitoring of concrete using a PZT transducer Smart Mater. Struct. 23 115019 10.1088/0964-1726/23/11/115019
  • Abdel-JaberHGlisicB 2014 A method for the on-site determination of prestressing forces using long-gauge fiber optic strain sensors Smart Mater. Struct. 23 075004 10.1088/0964-1726/23/7/075004
  • GaoDWangYWuZRahimGBaiS 2014 Design of a sensor network for structural health monitoring of a full-scale composite horizontal tail Smart Mater. Struct. 23 055011 10.1088/0964-1726/23/5/055011