1,074
Views
8
CrossRef citations to date
0
Altmetric
Focus on Advanced Inorganic Materials Science: Non-Traditional Concepts and Approaches

Cupric oxide inclusions in cuprous oxide crystals grown by the floating zone method

, , &
Article: 034901 | Received 22 Jan 2015, Accepted 25 Mar 2015, Published online: 08 May 2015

References

  • FrazerLSchallerR DChangK BKettersonJ BPoeppelmeierK R 2014 Third-harmonic generation in cuprous oxide: efficiency determination Opt. Lett. 39 618 21 618–21 10.1364/OL.39.000618
  • ManiSJangJ IKettersonJ B 2010 Nonlinear optical processes at quadrupole polariton resonance in Cu2O as probed by a Z-scan technique Phys. Rev. B 82 113203 10.1103/PhysRevB.82.113203
  • FrazerLChangK BPoeppelmeierK RKettersonJ B 2014 Photoionization cross section of 1s orthoexcitons in cuprous oxide Phys. Rev. B 89 245203 10.1103/PhysRevB.89.245203
  • JangJ IWolfeJ P 2006 Auger recombination and biexcitons in Cu2O: a case for dark excitonic matter Phys. Rev. B 74 045211 10.1103/PhysRevB.74.045211
  • KazimierczukTFröhlichDScheelSStolzHBayerM 2014 Giant Rydberg excitons in the copper oxide Cu2O Nature 514 343 7 343–7 10.1038/nature13832
  • HenryC H 1980 Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells J. Appl. Phys. 51 4494 500 4494–500 10.1063/1.328272
  • BriskmanR N 1992 A study of electrodeposited cuprous oxide photovoltaic cells Sol. Energy Mater. Sol. Cells 27 361 8 361–8 10.1016/0927-0248(92)90097-9
  • WeiH MGongH BChenLZiMCaoB Q 2012 Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure J. Phys. Chem. C 116 10510 5 10510–5 10.1021/jp301904s
  • BendavidL BCarterE A 2013 First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces J. Phys. Chem. B 117 15750 60 15750–60 10.1021/jp406454c
  • HuangLPengFYuHWangH 2009 Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion Solid State Sci. 11 129 38 129–38 10.1016/j.solidstatesciences.2008.04.013
  • YangHOuyangJTangAXiaoYLiXDongXYuY 2006 Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles Mater. Res. Bull. 41 1310 8 1310–8 10.1016/j.materresbull.2006.01.004
  • KoiralaSNakaNTanakaK 2013 Correlated lifetimes of free paraexcitons and excitons trapped at oxygen vacancies in cuprous oxide J. Lumin. 134 524 7 524–7 10.1016/j.jlumin.2012.07.035
  • JangJ ISunYWatkinsBKettersonJ B 2006 Bound excitons in Cu2O: efficient internal free exciton detector Phys. Rev. B 74 235204 10.1103/PhysRevB.74.235204
  • OhkuboTUshioMUritaKMoriguchiIAhmmadBItadaniAKurodaY 2014 Nanospace-enhanced photoreduction for the synthesis of copper (I) oxide nanoparticles under visible-light irradiation J. Colloid Interface Sci. 421 165 9 165–9 10.1016/j.jcis.2014.01.035
  • WuSLiuTZengWCaoSPanKLiSYanYHeJMiaoBPengX 2014 Octahedral cuprous oxide synthesized by hydrothermal method in ethanolamine/distilled water mixed solution J. Mater. Sci., Mater. Electron. 25 974 80 974–80 10.1007/s10854-013-1674-4
  • LabidiAOualiHBejaouiAWoodTLambert-MauriatCMaarefMAguirK 2014 Synthesis of pure Cu2O thin layers controlled by in situ conductivity measurements Ceram. Int. 40 7851 6 7851–6 10.1016/j.ceramint.2013.12.130
  • LiJMeiZYeDLiangHLiuLLiuYGaleckasAKuznetsovA YDuX 2013 Engineering of optically defect free Cu2O enabling exciton luminescence at room temperature Opt. Mater. Express 3 2072 7 2072–7 10.1364/OME.3.002072
  • SunSYangZ 2014 Recent advances in tuning crystal facets of polyhedral cuprous oxide architectures RSC Adv. 4 3804 22 3804–22 10.1039/C3RA45445B
  • ManiSJangJ IKettersonJ BParkH Y 2009 High-quality Cu2O crystals with various morphologies grown by thermal oxidation J. Cryst. Growth 311 3549 52 3549–52 10.1016/j.jcrysgro.2009.05.006
  • TothR SKilksonRTrivichD 1960 Preparation of large area single-crystal cuprous oxide J. Appl. Phys. 31 1117 21 1117–21 10.1063/1.1735756
  • KinoshitaANakanoT 1967 Cu2O crystal growth by hydrothermal technique Japan. J. Appl. Phys. 6 656 10.1143/JJAP.6.656
  • ZuckerR S 1965 Growth of single crystal cuprous oxide from the melt and luminescence of cuprous oxide J. Electrochem. Soc. 112 417 20 417–20 10.1149/1.2423559
  • ChangK BFrazerLSchwartzJ JKettersonJ BPoeppelmeierK R 2013 Removal of copper vacancies in cuprous oxide single crystals grown by the floating zone method Crys. Growth Des. 13 4914 22 4914–22 10.1021/cg401081m
  • TrivichDPollackG P 1970 Preparation of single crystals of cuprous oxide in an arc-image furnace J. Electrochem. Soc. 117 344 5 344–5 10.1149/1.2407507
  • BrowerW S 1971 Growth of single crystal cuprous oxide J. Cryst. Growth 8 227 9 227–9 10.1016/0022-0248(71)90061-3
  • Schmidt-WhitleyRMartinez-ClementeMRevcolevschiA 1974 Growth and microstructural control of single crystal cuprous oxide Cu2O J. Cryst. Growth 23 113 20 113–20 10.1016/0022-0248(74)90110-9
  • LoisonJ LRobinoMSchwabC 1980 Progress in melt growth of Cu2O J. Cryst. Growth 50 816 22 816–22 10.1016/0022-0248(80)90143-8
  • ItoTYamaguchiHOkabeKMasumiT 1998 Single-crystal growth and characterization of Cu2O and CuO J. Mater. Sci. 33 3555 66 3555–66 10.1023/A:1004690809547
  • RaebigerHLanySZungerA 2007 Origins of the p-type nature and cation deficiency in Cu2O and related materials Phys. Rev. B 76 045209 10.1103/PhysRevB.76.045209
  • TanakaAKatsunoH 2011 Void-free cuprous oxide tube prepared by thermal oxidation on outside of copper tube Japan. J. Appl. Phys. 50 0205 10.7567/JJAP.50.110205
  • BardeenJBrattainWShockleyW 1946 Investigation of oxidation of copper by use of radioactive Cu tracer J. Chem. Phys. 14 714 21 714–21 10.1063/1.1724091
  • MooreW JSeliksonB 1951 The diffusion of copper in cuprous oxide J. Chem. Phys. 19 1539 10.1063/1.1748118
  • ZhuYMimuraKIsshikiM 2004 Oxidation mechanism of Cu2O to CuO at 600–1050 C Oxid. Met. 62 207 22 207–22 10.1007/s11085-004-7808-6
  • GrzesikZMigdalskaM 2011 Oxidation mechanism of Cu2O and defect structure of CuO at high temperatures High Temp. Mater. Process. 30 277 87 277–87 10.1515/htmp.2011.046
  • HaydarACoretA 1980 Excitonic photoconductivity and structural defects in Cu2O crystals Le J. de Phys. Colloques 41 C6 504 C6–504 10.1051/jphyscol:19806131
  • FrazerLLenferinkE JChangK BPoeppelmeierK RSternN PKetttersonJ B 2014 Evaluation of defects in cuprous oxide through exciton luminescence imaging J. Lumin. 159 294 302 294–302 10.1016/j.jlumin.2014.11.035
  • IguchiEYajimaKSaitoY 1974 Growth of a cylindrical Cu2O layer by oxidizing Cu J. Cryst. Growth 24 572 5 572–5 10.1016/0022-0248(74)90381-9
  • IsseroffL YCarterE A 2013 Electronic structure of pure and doped cuprous oxide with copper vacancies: suppression of trap states Chem. Mater. 25 253 65 253–65 10.1021/cm3040278
  • MooreW JEbisuzakiYSlussJ A 1958 Exchange and diffusion of oxygen in crystalline cuprous oxide J. Phys. Chem. 62 1438 41 1438–41 10.1021/j150569a022
  • WuDZhangQTaoM 2006 LSDA + U study of cupric oxide: electronic structure and native point defects Phys. Rev. B 73 235206 10.1103/PhysRevB.73.235206
  • KoohpayehS MFortDAbellJ S 2008 The optical floating zone technique: a review of experimental procedures with special reference to oxides Prog. Cryst. Growth Charact. Mater. 54 121 37 121–37 10.1016/j.pcrysgrow.2008.06.001
  • DabkowskaH ADabkowskiA B 2010 Crystal growth of oxides by optical floating zone technique Springer Handbook of Crystal Growth DhanarajG BPrasadVDudleyM Berlin Springer 367 91 pp 367–91
  • KoohpayehS MFortDBradshawAAbellJ S 2009 Thermal characterization of an optical floating zone furnace: a direct link with controllable growth parameters J. Cryst. Growth 311 2513 8 2513–8 10.1016/j.jcrysgro.2009.02.017
  • SchneiderC ARasbandW SEliceiriK W 2012 NIH Image to ImageJ: 25 years of image analysis Nat. Methods 9 671 5 671–5 10.1038/nmeth.2089
  • PressW HTeukolskyS AVetterlingW TFlanneryB P 2007 Numerical Recipes The Art of Scientific Computing 3rd edn Cambridge Cambridge University Press
  • EagleshamD JWhiteA EFeldmanL CMoriyaNJacobsonD C 1993 Equilibrium shape of Si Phys. Rev. Lett. 70 1643 10.1103/PhysRevLett.70.1643
  • PrabhakaranDIslaPBoothroydA T 2002 Growth of large La SrxNiO single crystals by the floating-zone technique J. Cryst. Growth 237 815 9 815–9 10.1016/S0022-0248(01)02039-5
  • DabkowskiADabkowskiH AGreedanJ E 1993 SrLaGaO4-Czochralski crystal growth and basic properties J. Cryst. Growth 132 205 8 205–8 10.1016/0022-0248(93)90263-V
  • GuastiM F 1992 Analytic geometry of some rectilinear figures Int. J. Math. Educ. Sci. Technol. 23 895 913 895–913 10.1080/0020739920230607
  • CerfRPicardJ 2006 The Wulff Crystal in Ising and Percolation Models vol 1878 Berlin Springer