4,306
Views
127
CrossRef citations to date
0
Altmetric
Reviews

Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

, &
Article: 053501 | Received 08 Apr 2015, Accepted 19 Aug 2015, Published online: 08 Sep 2015

References

  • BradleyCHarrisonJ 2004 Descriptive epidemiology of traumatic fractures in Australia Injury Research and Statistics Series No. 17 Canberra Australian Institute of Health and Welfare
  • BergenG SChenL-HWarnerM 2008 Injury in the United States; 2007 Chartbook Hyattsville, MD US National Center for Health Statistics
  • ÅkessonKMitchelP 2012 Capture the Fracture: A Global Campaign to Break the Fragility Fracture Cycle Nyon International Osteoporosis Foundation
  • AjamiEMahnoEMendesV CBellSMoineddinRDaviesJ E 2014 Bone healing and the effect of implant surface topography on osteoconduction in hyperglycemia Acta Biomater. 10 394 405 394–405 10.1016/j.actbio.2013.09.020
  • AlbrektssonTBrånemarkP-IHanssonH-ALindströmJ 1981 Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man Acta Orthop. 52 155 170 155–70 10.3109/17453678108991776
  • RossiFLangN PDe SantisEMorelliFFaveroGBotticelliD 2014 Bone-healing pattern at the surface of titanium implants: an experimental study in the dog Clin. Oral Implants Res. 25 124 131 124–31 10.1111/clr.12097
  • NiinomiMNakaiM 2011 Titanium-based biomaterials for preventing stress shielding between implant devices and bone Int. J. Biomater. 2011 e836587 10.1155/2011/836587
  • SpoerkeE DMurrayN GLiHBrinsonL CDunandD CStuppS I 2005 A bioactive titanium foam scaffold for bone repair Acta Biomater. 1 523 533 523–33 10.1016/j.actbio.2005.04.005
  • StaigerM PPietakA MHuadmaiJDiasG 2006 Magnesium and its alloys as orthopedic biomaterials: a review Biomaterials 27 1728 1734 1728–34 10.1016/j.biomaterials.2005.10.003
  • WitteF 2010 The history of biodegradable magnesium implants: a review Acta Biomater. 6 1680 1692 1680–92 10.1016/j.actbio.2010.02.028
  • ZengRDietzelWWitteFHortNBlawertC 2008 Progress and challenge for magnesium alloys as biomaterials Adv. Eng. Mater. 10 B3 14 B3–14 10.1002/adem.200800035
  • TobaYKajitaYMasuyamaRTakadaYSuzukiKAoeS 2000 Dietary magnesium supplementation affects bone metabolism and dynamic strength of bone in ovariectomized rats J. Nutr. 130 216 220 216–20
  • CuiFYangJJiaoYYinQZhangYLeeI-S 2008 Calcium phosphate coating on magnesium alloy for modification of degradation behavior Front. Mater. Sci. China 2 143 148 143–8 10.1007/s11706-008-0024-6
  • HasselTBachF WKrauseC 2007 Influence of alloy compositionon the mechanical and electrochemical properties of binary Mg-Ca alloys and its corrosion behavior in solutions at different chloride concentrations Proc. 7th Int. Conf. Magnesium Alloys and Their Applications ed K U Kainer Hoboken, NJ Wiley 789 795 pp 789–95
  • SalahshoorMGuoY B 2013 Process mechanics in ball burnishing biomedical magnesium–calcium alloy Int. J. Adv. Manuf. Technol. 64 133 144 133–44 10.1007/s00170-012-4024-4
  • WangXZengXWuGYaoSLaiY 2007 Effects of tantalum ion implantation on the corrosion behavior of AZ31 magnesium alloys J. Alloys Compd. 437 87 92 87–92 10.1016/j.jallcom.2006.07.074
  • SalahshoorMGuoY 2012 Biodegradable orthopedic magnesium-calcium (MgCa) alloys, processing, and corrosion performance Materials 5 135 155 135–55 10.3390/ma5010135
  • SongY-WShanD-YChenR-SHanE-H 2007 Study on electroless Ni–P–ZrO2 composite coatings on AZ91D magnesium alloys Surf. Eng. 23 334 338 334–8 10.1179/174329406X150422
  • Amel-FarzadHPeivandiM TYusof-SaniS M R 2007 In-body corrosion fatigue failure of a stainless steel orthopaedic implant with a rare collection of different damage mechanisms Eng. Fail. Anal. 14 1205 1217 1205–17 10.1016/j.engfailanal.2006.11.037
  • KanchanomaiCPhiphobmongkolVMuanjanP 2008 Fatigue failure of an orthopedic implant—a locking compression plate Eng. Fail. Anal. 15 521 530 521–30 10.1016/j.engfailanal.2007.04.001
  • SivakumarMRajeswariS 1992 Investigation of failures in stainless steel orthopaedic implant devices: pit-induced stress corrosion cracking J. Mater. Sci. Lett. 11 1039 1042 1039–42 10.1007/BF00729754
  • ChaP-R 2013 Biodegradability engineering of biodegradable Mg alloys: tailoring the electrochemical properties and microstructure of constituent phases Sci. Rep. 3 2367 10.1038/srep02367
  • ZhangB PWangYGengL 2011 Research on Mg-Zn-Ca Alloy as degradable biomaterial Biomaterials—Physics and Chemistry PignatelloR Rijeka InTech
  • FarraroK FKimK EWooS L-YFlowersJ RMcCulloughM B 2014 Revolutionizing orthopaedic biomaterials: the potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering J. Biomech. 47 1979 1986 1979–86 10.1016/j.jbiomech.2013.12.003
  • LiZGuXLouSZhengY 2008 The development of binary Mg–Ca alloys for use as biodegradable materials within bone Biomaterials 29 1329 1344 1329–44 10.1016/j.biomaterials.2007.12.021
  • ThomannMKrauseCBormannDvon der HöhNWindhagenHMeyer-LindenbergA 2009 Comparison of the resorbable magnesium. Alloys LAE442 und MgCa0.8 concerning their mechanical properties, their progress of degradation and the bone-implant-contact after 12 months implantation duration in a rabbit model Mater. Werkst. 40 82 87 82–7 10.1002/mawe.200800412
  • KangS-H 2014 Biodegradable-polymer drug-eluting stents vs. bare metal stents vs. durable-polymer drug-eluting stents: a systematic review and bayesian approach network meta-analysis Eur. Heart J. 35 1147 1158 1147–58 10.1093/eurheartj/eht570
  • MoravejMMantovaniD 2011 Biodegradable metals for cardiovascular stent application: interests and new opportunities Int. J. Mol. Sci. 12 4250 4270 4250–70 10.3390/ijms12074250
  • OrmistonJ ASerruysP W S 2009 Bioabsorbable coronary stents Circ. Cardiovasc. Interv. 2 255 260 255–60 10.1161/CIRCINTERVENTIONS.109.859173
  • PeusterMWohlseinPBrugmannMEhlerdingMSeidlerKFinkCBrauerHFischerAHausdorfG 2001 A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits Heart 86 563 569 563–9 10.1136/heart.86.5.563
  • MahnkenA H 2012 CT imaging of coronary stents: past, present, and future ISRN Cardiol. 2012 139823 10.5402/2012/139823
  • PurnamaAHermawanHMantovaniD 2014 Biodegradable metal stents: a focused review on materials and clinical studies J. Biomater. Tissue Eng. 4 868 874 868–74 10.1166/jbt.2014.1263
  • PeusterMBeerbaumPBachF-WHauserH 2006 Are resorbable implants about to become a reality? Cardiol. Young 16 107 116 107–16 10.1017/S1047951106000011
  • BonanRAsgarA 2009 Biodegradable stents—where are we in 2009? Cardiology 6 81 84 81–4
  • WaksmanR 2006 Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries Catheter. Cardiovasc. Interv. 68 607 617 607–17 10.1002/ccd.20727
  • ErbelR 2007 Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial Lancet 369 1869 1875 1869–75 10.1016/S0140-6736(07)60853-8
  • Di MarioC 2004 Drug-eluting bioabsorbable magnesium stent J. Intervent. Cardiol. 17 391 395 391–5 10.1111/j.1540-8183.2004.04081.x
  • PeetersPBosiersMVerbistJDelooseKHeubleinB 2005 Preliminary results after application of absorbable metal stents in patients with critical limb ischemia J. Endovasc. Ther. 12 1 5 1–5 10.1583/04-1349R.1
  • BosiersM O. B. of the A. I. Investigators 2008 AMS INSIGHT—absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis Cardiovasc. Intervent. Radiol. 32 424 435 424–35 10.1007/s00270-008-9472-8
  • DemirA GPrevitaliBGeQVedaniMWuWMigliavaccaFPetriniLBiffiC ABestettiM 2014 Biodegradable magnesium coronary stents: material, design and fabrication Int. J. Comput. Integr. Manuf. 27 936 945 936–45 10.1080/0951192X.2013.834475
  • VedaniMGeQWuWPetriniL 2012 Texture effects on design of Mg biodegradable stents Int. J. Mater. Form. 7 31 38 31–8 10.1007/s12289-012-1108-5
  • KirklandN TBirbilisNStaigerM P 2012 Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations Acta Biomater. 8 925 936 925–36 10.1016/j.actbio.2011.11.014
  • HarandiS EMirshahiMKoleiniSIdrisM HJafariHKadirM R A 2013 Effect of calcium content on the microstructure, hardness and in-vitro corrosion behavior of biodegradable Mg-Ca binary alloy Mater. Res. 16 11 18 11–8 10.1590/S1516-14392012005000151
  • DryndaAHasselTHoehnRPerzABachF-WPeusterM 2010 Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications J. Biomed. Mater. Res. A 93 763 775 763–75
  • NassifNGhayadI 2013 Corrosion protection and surface treatment of magnesium alloys used for orthopedic applications Adv. Mater. Sci. Eng. 2013 e532896 10.1155/2013/532896
  • SongGAtrensA 2003 Understanding magnesium corrosion—a framework for improved alloy performance Adv. Eng. Mater. 5 837 858 837–58 10.1002/adem.200310405
  • WitteFKaeseVHaferkampHSwitzerEMeyer-LindenbergAWirthC JWindhagenH 2005 In vivo corrosion of four magnesium alloys and the associated bone response Biomaterials 26 3557 3563 3557–63 10.1016/j.biomaterials.2004.09.049
  • HornbergerHVirtanenSBoccacciniA R 2012 Biomedical coatings on magnesium alloys—a review Acta Biomater. 8 2442 2455 2442–55 10.1016/j.actbio.2012.04.012
  • ThomannMKrauseCAngrisaniNBormannDHasselTWindhagenHMeyer-LindenbergA 2010 Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model J. Biomed. Mater. Res. A 93 1609 1619 1609–19 10.1002/jbm.a.32639
  • YanTTanLXiongDLiuXZhangBYangK 2010 Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy Mater. Sci. Eng. C 30 740 748 740–8 10.1016/j.msec.2010.03.007
  • YanTTanLZhangBYangK 2014 Fluoride conversion coating on biodegradable AZ31B magnesium alloy J. Mater. Sci. Technol. 30 666 674 666–74 10.1016/j.jmst.2013.12.015
  • GuX NZhengWChengYZhengY F 2009 A study on alkaline heat treated Mg–Ca alloy for the control of the biocorrosion rate Acta Biomater. 5 2790 2799 2790–9 10.1016/j.actbio.2009.01.048
  • LiLGaoJWangY 2004 Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid Surf. Coat. Technol. 185 92 98 92–8 10.1016/j.surfcoat.2004.01.004
  • ZhuYWuGZhangY-HZhaoQ 2011 Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31 Appl. Surf. Sci. 257 6129 6137 6129–37 10.1016/j.apsusc.2011.02.017
  • SongYZhangSLiJZhaoCZhangX 2010 Electrodeposition of Ca–P coatings on biodegradable Mg alloy: in vitro biomineralization behavior Acta Biomater. 6 1736 1742 1736–42 10.1016/j.actbio.2009.12.020
  • LiJSongYZhangSZhaoCZhangFZhangXCaoLFanQTangT 2010 In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg–Zn alloy Biomaterials 31 5782 5788 5782–8 10.1016/j.biomaterials.2010.04.023
  • KannanM BOrrL 2011 In vitro mechanical integrity of hydroxyapatite coated magnesium alloy Biomed. Mater. Bristol Engl. 6 045003 10.1088/1748-6041/6/4/045003
  • LiMChenQZhangWHuWSuY 2011 Corrosion behavior in SBF for titania coatings on Mg–Ca alloy J. Mater. Sci. 46 2365 2369 2365–9 10.1007/s10853-010-5083-2
  • WhiteLKooYYunYSankarJ 2013 TiO2 deposition on AZ31 magnesium alloy using plasma electrolytic oxidation J. Nanomater. 2013 319437 10.1155/2013/319437
  • RazaviMFathiMSavabiOVashaeeDTayebiL 2014 In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants Mater. Sci. Eng. C 41 168 177 168–77 10.1016/j.msec.2014.04.039
  • XinYLiuCZhangWHuoKTangGTianXChuP K 2008 Corrosion resistance of ZrO2–Zr-coated biodegradable surgical magnesium alloy J. Mater. Res. 23 312 319 312–9 10.1557/JMR.2008.0040
  • SinghS SRoyALeeBKumtaP N 2011 Aqueous deposition of calcium phosphates and silicate substituted calcium phosphates on magnesium alloys Mater. Sci. Eng. B 176 1695 1702 1695–702 10.1016/j.mseb.2011.08.005
  • RazaviMFathiMSavabiOBeniB HRazaviS MVashaeeDTayebiL 2014 Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6) Appl. Surf. Sci. 288 130 137 130–7 10.1016/j.apsusc.2013.09.160
  • YaoZ PCuiR HJiangZ HWangF P 2008 Micro-arc formation of ZrO2 ceramic coatings on AZ91D Mg alloy Surf. Eng. 24 355 357 355–7 10.1179/174329408X293701
  • WangM-JLiC-FYenS-K 2013 Electrolytic MgO/ZrO2 duplex-layer coating on AZ91D magnesium alloy for corrosion resistance Corros. Sci. 76 142 153 142–53 10.1016/j.corsci.2013.06.037
  • PhaniA RGammelF JHackTHaefkeH 2005 Enhanced corrosioon resistance by sol-gel-based ZrO2-CeO2 coatings on magnesium alloys Mater. Corros. 56 77 82 77–82 10.1002/maco.200403823
  • AlabbasiABobby KannanMBlawertC 2014 Dual layer inorganic coating on magnesium for delaying the biodegradation for bone fixation implants Mater. Lett. 124 188 191 188–91 10.1016/j.matlet.2014.03.094
  • CamiréC LJegou Saint-JeanSMochalesCNevstenPWangJ-SLidgrenLMcCarthyIGinebraM-P 2006 Material characterization and in vivo behavior of silicon substituted α-tricalcium phosphate cement J. Biomed. Mater. Res. B Appl. Biomater. 76B 424 431 424–31 10.1002/jbm.b.30385
  • TianPLiuX 2014 Surface modification of biodegradable magnesium and its alloys for biomedical applications Regen. Biomater. 2 135 151 135–51 10.1093/rb/rbu013
  • ChenX BBirbilisNAbbottT B 2011 Review of corrosion-resistant conversion coatings for magnesium and its alloys Corrosion 67 035005 10.5006/1.3563639
  • IshizakiTSakamotoM 2011 Facile formation of biomimetic color-tuned superhydrophobic magnesium alloy with corrosion resistance Langmuir ACS J. Surf. Colloids 27 2375 2381 2375–81 10.1021/la1051029
  • CuiXYangYLiuEJinGZhongJLiQ 2011 Corrosion behaviors in physiological solution of cerium conversion coatings on AZ31 magnesium alloy Appl. Surf. Sci. 257 9703 9709 9703–9 10.1016/j.apsusc.2011.04.141
  • LevyGAghionE 2013 Effect of diffusion coating of Nd on the corrosion resistance of biodegradable Mg implants in simulated physiological electrolyte Acta Biomater. 9 8624 8630 8624–30 10.1016/j.actbio.2013.01.009
  • GaoJ HGuanS KChenJWangL GZhuS JHuJ HRenZ W 2011 Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg–Zn–Ca alloy Appl. Surf. Sci. 257 2231 2237 2231–7 10.1016/j.apsusc.2010.09.080
  • GuX NLiNZhouW RZhengY FZhaoXCaiQ ZRuanL 2011 Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg–Ca alloy Acta Biomater. 7 1880 1889 1880–9 10.1016/j.actbio.2010.11.034
  • ShiYQiMChenYShiP 2011 MAO-DCPD composite coating on Mg alloy for degradable implant applications Mater. Lett. 65 2201 2204 2201–4 10.1016/j.matlet.2011.04.037
  • WangH XGuanS KWangXRenC XWangL G 2010 In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process Acta Biomater. 6 1743 1748 1743–8 10.1016/j.actbio.2009.12.009
  • WenCGuanSPengLRenCWangXHuZ 2009 Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications Appl. Surf. Sci. 255 6433 6438 6433–8 10.1016/j.apsusc.2008.09.078
  • AsohHOnoS 2003 Anodizing of magnesium in amine-ethylene glycol electrolyte Mater. Sci. Forum 419–22 957 962 957–62 10.4028/www.scientific.net/MSF.419-422.957
  • WuG SZengX QYaoS SHanH B 2007 Ion implanted AZ31 magnesium alloy Mater. Sci. Forum 546–49 551 554 551–4 10.4028/www.scientific.net/MSF.546-549.551
  • ZhouHChenFYangY GWanH CCaiS 2008 Study on process of ion implantation on AZ31 magnesium alloy Key Eng. Mater. 373–74 342 345 342–5 10.4028/www.scientific.net/KEM.373-374.342
  • WuGDingKZengXWangXYaoS 2009 Improving corrosion resistance of titanium-coated magnesium alloy by modifying surface characteristics of magnesium alloy prior to titanium coating deposition Scr. Mater. 61 269 272 269–72 10.1016/j.scriptamat.2009.03.061
  • WanG JMaitzM FSunHLiP PHuangN 2007 Corrosion properties of oxygen plasma immersion ion implantation treated magnesium Surf. Coat. Technol. 201 8267 8272 8267–72 10.1016/j.surfcoat.2006.02.088
  • XuRYangXZhangXWangMLiPZhaoYWuGChuP K 2013 Effects of carbon dioxide plasma immersion ion implantation on the electrochemical properties of AZ31 magnesium alloy in physiological environment Appl. Surf. Sci. 286 257 260 257–60 10.1016/j.apsusc.2013.09.060
  • LiuCXinYTianXChuP K 2007 Corrosion behavior of AZ91 magnesium alloy treated by plasma immersion ion implantation and deposition in artificial physiological fluids Thin Solid Films 516 422 427 422–7 10.1016/j.tsf.2007.05.048
  • ZhaoYWuGPanHYeungK W KChuP K 2012 Formation and electrochemical behavior of Al and O plasma-implanted biodegradable Mg-Y-RE alloy Mater. Chem. Phys. 132 187 191 187–91 10.1016/j.matchemphys.2011.11.028
  • XuRWuGYangXHuTLuQChuP K 2011 Controllable degradation of biomedical magnesium by chromium and oxygen dual ion implantation Mater. Lett. 65 2171 2173 2171–3 10.1016/j.matlet.2011.04.043
  • ZhaoYJameshM ILiW KWuGWangCZhengYYeungK W KChuP K 2014 Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys Acta Biomater. 10 544 556 544–56 10.1016/j.actbio.2013.10.012
  • ZhaoYWuGLuQWuJXuRYeungK W KChuP K 2013 Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation Thin Solid Films 529 407 411 407–11 10.1016/j.tsf.2012.05.046
  • CuiWBeniashEGawaltEXuZSfeirC 2013 Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition Acta Biomater. 9 8650 8659 8650–9 10.1016/j.actbio.2013.06.031
  • HallCFieldSZuberKMurphyPEvansD 2013 Corrosion resistance of robust optical and electrical thin film coatings on polymeric substrates Corros. Sci. 69 406 411 406–11 10.1016/j.corsci.2013.01.009
  • ZuberKHallCMurphyPEvansD 2012 Atomic structure studies of chrome alloy coatings and their abrasion resistance Surf. Coat. Technol. 206 3645 3649 3645–9 10.1016/j.surfcoat.2012.03.014
  • ChenWHuangJPengJ 2013 Characterisation of TiAlN PVD coatings on AZ31 magnesium alloy Res. Chem. Intermed. 41 257 1266 257–1266 10.1007/s11164-013-1270-5
  • DaiWWuGWangA 2010 Preparation, characterization and properties of Cr-incorporated DLC films on magnesium alloy Diamond Relat. Mater. 19 1307 1315 1307–15 10.1016/j.diamond.2010.06.018
  • WuGDaiWZhengHWangA 2010 Improving wear resistance and corrosion resistance of AZ31 magnesium alloy by DLC/AlN/Al coating Surf. Coat. Technol. 205 2067 2073 2067–73 10.1016/j.surfcoat.2010.08.103
  • AltunHSenS 2006 The effect of PVD coatings on the corrosion behaviour of AZ91 magnesium alloy Mater. Des. 27 1174 1179 1174–9 10.1016/j.matdes.2005.02.004
  • SurmenevaM A 2013 Preparation of a silicate-containing hydroxyapatite-based coating by magnetron sputtering: structure and osteoblast-like MG63 cells in vitro study RSC Adv. 3 1240 11246 1240–11246 10.1039/c3ra40446c
  • SurmenevR ASurmenevaM AEvdokimovK EPichuginV FPeitschTEppleM 2011 The influence of the deposition parameters on the properties of an rf-magnetron-deposited nanostructured calcium phosphate coating and a possible growth mechanism Surf. Coat. Technol. 205 3600 3606 3600–6 10.1016/j.surfcoat.2010.12.039
  • AntunesR ARodasA C DLimaN BHigaO ZCostaI 2010 Study of the corrosion resistance and in vitro biocompatibility of PVD TiCN-coated AISI 316 L austenitic stainless steel for orthopedic applications Surf. Coat. Technol. 205 2074 2081 2074–81 10.1016/j.surfcoat.2010.08.101
  • PichuginV FSurmenevR AShesterikovE VRyabtsevaM AEshenkoE VTverdokhlebovS IPrymakOEppleM 2008 The preparation of calcium phosphate coatings on titanium and nickel–titanium by rf-magnetron-sputtered deposition: composition, structure and micromechanical properties Surf. Coat. Technol. 202 3913 3920 3913–20 10.1016/j.surfcoat.2008.01.038
  • SurmenevR A 2012 A review of plasma-assisted methods for calcium phosphate-based coatings fabrication Surf. Coat. Technol. 206 2035 2056 2035–56 10.1016/j.surfcoat.2011.11.002
  • SurmenevaM ATyurinA IMukhametkaliyevTPirozhkovaT SShuvarinI ASyrtanovM SSurmenevR A 2015 Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering J. Mech. Behav. Biomed. Mater. 46 127 136 127–36 10.1016/j.jmbbm.2015.02.025
  • HocheHGroßSOechsnerM 2014 Development of new PVD coatings for magnesium alloys with improved corrosion properties Surf. Coat. Technol. A 259 102 108 102–8 10.1016/j.surfcoat.2014.04.038
  • XieZChenTChenQYangQTanSWangYLuoYLuoZHuaM Tribocorrosion behaviors of AlN/MoS2–phenolic resin duplex coatings on nitrogen implanted magnesium alloys Surf. Coat. Technol. 266 64 69 64–9 10.1016/j.surfcoat.2015.02.013
  • op’t HoogCBirbilisNEstrinY 2008 Corrosion of pure Mg as a function of grain size and processing route Adv. Eng. Mater. 10 579 582 579–82 10.1002/adem.200800046
  • HocheHRosenkranzCDelpALohrengelM MBroszeitEBergerC 2005 Investigation of the macroscopic and microscopic electrochemical corrosion behaviour of PVD-coated magnesium die cast alloy AZ91 Surf. Coat. Technol. 193 178 184 178–84 10.1016/j.surfcoat.2004.08.204
  • AzarVHashemiBYazdiM R 2010 The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer’s solution Surf. Coat. Technol. 204 3546 3551 3546–51 10.1016/j.surfcoat.2010.04.015
  • HammersleyGHackelL AHarrisF 2000 Surface prestressing to improve fatigue strength of components by laser shot peening Opt. Lasers Eng. 34 327 337 327–37 10.1016/S0143-8166(00)00083-X
  • PeyrePScherpereelXBertheLCarboniCFabbroRBérangerGLemaitreC 2000 Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance Mater. Sci. Eng. A 280 294 302 294–302 10.1016/S0921-5093(99)00698-X
  • LiuW CDongJZhangPKorsunskyA MSongXDingW J 2011 Improvement of fatigue properties by shot peening for Mg–10Gd–3Y alloys under different conditions Mater. Sci. Eng. A 528 5935 5944 5935–44 10.1016/j.msea.2011.04.004
  • WagnerLHilpertMWendtJKüsterB 2003 On Methods for improving the fatigue performance of the wrought magnesium Alloys AZ31 and AZ80 Mater. Sci. Forum 419–22 93 102 93–102 10.4028/www.scientific.net/MSF.419-422.93
  • FouadYMhaedeMWagnerL 2010 Effects of mechanical surface treatments on fatigue performance of extruded ZK60 alloy Fatigue Amp Fract. Eng. Mater. Amp Struct. 34 403 407 403–7 10.1111/j.1460-2695.2010.01529.x
  • MhaedeMPastorekFHadzimaB 2014 Influence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihydrate (DCPD) Mater. Sci. Eng. C Mater. Biol. Appl. 39 330 335 330–5 10.1016/j.msec.2014.03.023
  • von der HöhNvon RechenbergBBormannDLucasAMeyer-LindenbergA 2009 Influence of different surface machining treatments of resorbable magnesium alloy implants on degradation—EDX-analysis and histology results Mater. Werkst. 40 88 93 88–93 10.1002/mawe.200800378
  • DenkenaBLucasAThoreyFWaizyHAngrisaniNMeyer-LindenbergA 2011 Biocompatible magnesium alloys as degradable implant materials–machining induced surface and subsurface properties and implant performance Special Issues on Magnesium Alloys MonteiroW A InTech
  • PuZYangSSongG-LDillonO W Jr. PuleoD AJawahirI S 2011 Ultrafine-grained surface layer on Mg–Al–Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance Scr. Mater. 65 520 523 520–3 10.1016/j.scriptamat.2011.06.013
  • DenkenaBLucasA 2007 Biocompatible magnesium alloys as absorbable implant materials—adjusted surface and subsurface properties by machining processes CIRP Ann.—Manuf. Technol. 56 113 116 113–6 10.1016/j.cirp.2007.05.029
  • DisegiJSaxC 2009 Effect of low plasticity burnishing on the fatigue strength of spinal rods Presented at the In Proc. of the ASM MPMD (Materials and Processes for Medical Devices) Conf. and Expo Minneapolis, MN
  • SeemikeriC YBrahmankarP KMahagaonkarS B 2008 Low plasticity burnishing: an innovative manufacturing method for biomedical applications J. Manuf. Sci. Eng. 130 021008 10.1115/1.2896121
  • SchuhAZellerCHolzwarthUKachlerWWilckeGZeilerGEigenmannBBigoneyJ 2007 Deep rolling of titanium rods for application in modular total hip arthroplasty J. Biomed. Mater. Res. B Appl. Biomater. 81 330 335 330–5 10.1002/jbm.b.30669
  • StefaniniG GByrneR ASerruysP Wde WahaAMeierBMassbergSJüniPSchömigAWindeckerSKastratiA 2012 Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: a pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials Eur. Heart J. 33 1214 1222 1214–22 10.1093/eurheartj/ehs086