191
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Maltose and Maltotriose Active Transport and Fermentation by Saccharomyces CerevisiaesFootnote1

, , , &
Pages 99-104 | Published online: 01 Feb 2018

Literature Cited

  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. Short Protocols in Molecular Biology. John Wiley & Sons, New York, 1995.
  • Batista, A. S., Miletti, L. C., and Stambuk, B. U. Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport. J. Mol. Microbiol. Biotechnol. 8:26–33, 2004.
  • Batistote, M., da Cruz, S. H., and Ernandes, J. R. Altered patterns of maltose and glucose fermentation by brewing and wine yeasts influenced by the complexity of nitrogen source. J. Inst. Brew. 112:84–91, 2006.
  • Caceres, A., Cardenas, S., Gallego, M., and Valcarcel, M. A continuous spectrophotometric system for the discrimination/determination of monosaccharides and oligosaccharides in foods. Anal. Chim. Acta 404:121–129, 2000.
  • Chang, Y. S., Dubin, R. A., Perkins, E., Michels, C. A., and Needleman, R. B. Identification and characterization of the maltose permease in a genetically defined Saccharomyces strain. J. Bacteriol. 171:6148–6154, 1989.
  • Charron, M. J., Dubin, R. A., and Michels, C. A. Structural and functional analysis of the MAL1 locus of Saccharomyces cerevisiae. Mol. Cell. Biol. 6:3891–3899, 1986.
  • Charron, M. J., and Michels, C. A. The naturally occurring alleles of MAL1 in Saccharomyces species evolved by various mutagenic processes including chromosomal rearrangements. Genetics 120:83–93, 1988.
  • Cheng, Q., and Michels, C. A. MAL11 and MAL61 encode the inducible high-affinity maltose transporter of Saccharomyces cerevisiae. J. Bacteriol. 173:1817–1820, 1991.
  • Crumplen, R. M., Slaughter, J. C., and Stewart, G. G. Characteristics of maltose transporter activity in an ale and lager strain of the yeast Saccharomyces cerevisiae. Lett. Appl. Microbiol. 23:448–452, 1996.
  • Da Cruz, S. H., Cilli, E. M., and Ernandes, J. R. Structural complexity of the nitrogen source and influence on yeast growth and fermentation. J. Inst. Brew. 108:54–61, 2002.
  • Dietvorst, J., Londesborough, J., and Steensma, H. Y. Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter. Yeast 22:775–788, 2005.
  • Goldenthal, M. J., Vanoni, M., Buchferer, B., and Marmur, J. Regulation of MAL gene expression in yeast: Gene dosage effects. Mol. Gen. Genet. 209:508–517, 1987.
  • Han, E. K., Cotty, F., Sottas, C., Jiang, H., and Michels, C. A. Characterization of AGT1 encoding a general α-glucoside transporter from Saccharomyces. Mol. Microbiol. 17:1093–1107, 1995.
  • Higgins, V. J., Braidwood, M., Bell, P. J. L., Bissinger, P., Dawes, I. W., and Attfield, P. V. Genetic evidence that high noninduced maltase and maltose permease activities, governed by MALx3-encoded transcriptional regulators, determine efficiency of gas production by baker's yeast in unsugared dough. Appl. Environ. Microbiol. 65:680–685, 1999.
  • Hollatz, H., and Stambuk, B. U. Colorimetric determination of active α-glucoside transport in Saccharomyces cerevisiae. J. Microbiol. Methods 46:253–259, 2001.
  • James, T. C., Campbell, S., Donnelly, D., and Bond, U. Transcription profile of brewery yeast under fermentation conditions. J. Appl. Microbiol. 94:432–448, 2003.
  • Jespersen, L., Cesar, L. B., Meaden, P. G., and Jakobsen, M. Multiple α-glucoside transporter genes in brewer's yeast. Appl. Environ. Microbiol. 65:450–456, 1999.
  • Jules, M., Guillou, V., Francois, J., and Parrou, J. Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70:2771–2778, 2004.
  • Klein, C. J. L., Olsson, L., Rønnow, B., Mikkelsen, J. D., and Nielsen, J. Glucose and maltose metabolism in MIG1-disrupted and MAL-constitutive strains of Saccharomyces cerevisiae. Food Technol. Biotechnol. 35:287–292, 1997.
  • Kodama, Y., Fukui, N., Ashikari, T., Shibano, Y., Morioka-Fujimoto, K., Hiraki, Y., and Nakatani, K. Improvement of maltose fermentation efficiency: Constitutive expression of MAL genes in brewing yeasts. J. Am. Soc. Brew. Chem. 53:24–29, 1995.
  • Malluta, E. F., Decker, P., and Stambuk, B. U. The Kluyver effect for trehalose in Saccharomyces cerevisiae. J. Basic Microbiol. 40:199–205, 2000.
  • Meneses, F. J., and Jiranek, V. Expression patterns of genes and enzymes involved in sugar catabolism in industrial Saccharomyces cerevisiae strains displaying novel fermentation characteristics. J. Inst. Brew. 108:322–335, 2002.
  • Naumov, G., Naumova, E., and Michels, C. A. Genetic variation of the repeated MAL loci in natural populations of Saccharomyces cerevisiae and Saccharomyces paradoxus. Genetics 136:803–812, 1994.
  • Needleman, R. Control of maltase synthesis in yeast. Mol. Microbiol. 5:2079–2084, 1991.
  • Novak, S., Zechner-Krpan, V., and Marie, V. Regulation of maltose transport and metabolism in Saccharomyces cerevisiae. Food Technol. Biotechnol. 42:213–218, 2004.
  • Oda, Y., and Ouchi, K. Role of yeast maltose fermentation genes in CO2 production rate from sponge dough. Food Microbiol. 7:43–47, 1990.
  • Rautio, J., and Londesborough, J. Maltose transport by brewer's yeast in brewer's wort. J. Inst. Brew. 109:251–261, 2003.
  • Rodionov, Y. V., Keppen, O. I., and Sukhacheva, M. V. A photometric assay for ethanol. Appl. Biochem. Microbiol. 38:395–396, 2002.
  • Russell, I., and Stewart, G. G. Transformation of maltotriose uptake ability into a haploid strain of Saccharomyces spp. J. Inst. Brew. 86:55–59, 1980.
  • Salema-Oom, M., Pinto, V. V., Goncalves, P., and Spencer-Martins, I. Maltotriose utilization by industrial Saccharomyces strains: Characterization of a new member of the α-glucoside transporter family. Appl. Environ. Microbiol. 71:5044–5049, 2005.
  • Salgado, A. M., Folly, R. O. M., Valdman, B., Cos, O., and Valero, F. Colorimetric method for the determination of ethanol by flow injection analysis. Biotechonol. Lett. 22:327–330, 2000.
  • Serrano, R. Energy requirements for maltose transport in yeasts. Eur. J. Biochem. 80:97–102, 1977.
  • Shimizu, H., Mizuno, S., Hiroshima, T., and Shioya, S. Effect of carbon and nitrogen additions on consumption activity of apparent extract of yeast cells in a brewing process. J. Am. Soc. Brew. Chem. 60:163–169, 2002.
  • Stambuk, B. U. A simple experiment illustrating metabolic regulation, induction versus repression of yeast α-glucosidase. Biochem. Educ. 27:177–180, 1999.
  • Stambuk, B. U., Alves-Jr, S. L., Hollatz, C., and Zastrow, C. R. Improvement of maltotriose fermentation by Saccharomyces cerevisiae. Lett. Appl. Microbiol. 43:370–376, 2006.
  • Stambuk, B. U., Batista, A. S., and de Araujo, P. S. Kinetics of active sucrose transport in Saccharomyces cerevisiae. J. Biosci. Bioeng. 89:212–214, 2000.
  • Stambuk, B. U., da Silva, M. A., Panek, A. D., and de Araujo, P. S. Active α-glucoside transport in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 170:105–110, 1999.
  • Stambuk, B. U., and de Araujo, P. S. Kinetics of active α-glucoside transport by Saccharomyces cerevisiae. FEMS Yeast Res. 1:73–78, 2001.
  • Stewart, G. G. Application of yeast genetics within the brewing industry: A review. J. Am. Soc. Brew. Chem. 36:175–185, 1978.
  • Stewart, G. G., Erratt, J., Garrison, I., Goring, T., and Hancock, I. Studies on the utilization of wort carbohydrates by brewer's yeast strains. Tech. Q. Master Brew. Assoc. Am. 16:1–7, 1979.
  • Stewart, G. G., Goring, T. E., and Russel, I. Can a genetically manipulated yeast strain produce palatable beer? J. Am. Soc. Brew. Chem. 35:168–178, 1977.
  • Vidgren, V., Ruohonen, L., and Londesborough, J. Characterization and functional analysis of the MAL and MPH loci for maltose utilization in some ale and lager yeast strains. Appl. Environ. Microbiol. 71:7846–7857, 2005.
  • Volckaert, G., Voet, M., and Robben, J. Sequence analysis of a nearsubtelomeric 35.4 kb DNA segment on the right arm of chromosome VII from Saccharomyces cerevisiae carrying the MAL1 locus reveals 15 complete open reading frames, including ZUO1, BGL2 and BIO2 genes and a ABC transporter gene. Yeast 13:251–259, 1997.
  • Wang, J., and Needleman, R. Removal of a Mig1p binding site converts a MAL63 constitutive mutant derived by interchromosomal gene conversion into glucose insensitivity. Genetics 142:51–63, 1996.
  • Wang, X., Bali, M., Medintz, I., and Michels, C. A. Intracellular maltose is sufficient to induce MAL gene expression in Saccharomyces cerevisiae. Eukariot. Cell 1:696–703, 2002.
  • Yoon, S.-H., Mukerjea, R., and Robyt, J. F. Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohydr. Res. 338:1127–1132, 2003.
  • Zastrow, C. R., Hollatz, C., de Araujo, P. S., and Stambuk, B. U. Maltotriose fermentation by Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 27:34–38, 2001.
  • Zastrow, C. R., Mattos, M. A., Hollatz, C., and Stambuk, B. U. Maltotriose metabolism by Saccharomyces cerevisiae. Biotechnol. Lett. 22:455–459, 2000.
  • Zheng, X., D'Amore, T., Russell, I., and Stewart, G. G. Factors influencing maltotriose utilization during brewery wort fermentations. J. Am. Soc. Brew. Chem. 52:41–47, 1994.
  • Zheng, X., D'Amore, T., Russell, I., and Stewart, G. G. Transport kinetics of maltotriose in strains of Saccharomyces. J. Ind. Microbiol. 13:159–166, 1994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.