38
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of Indigenous Botswana Sorghum Cultivars with Respect to Their Diastatic Power, α-Amylase, β-Amylase, and Limit Dextrinase Potentials for Malting

, , &
Pages 29-36 | Published online: 01 Feb 2018

Literature Cited

  • Agu, R. C., and Palmer, G. H. Enzymic breakdown of endosperm protein of sorghum at different malting temperatures. J. Inst. Brew. 102:415–418, 1996.
  • Agu, R. C., Ugwuh, A. H., Okenchi, M. U., Aneke, I. B., and Anyanwu, T. U. Effect of low kilning temperatures on diastase and cellulose development of Nigerian malted sorghum (Sorghum bicolor). Proc. Biochem. 31:63–68, 1996.
  • Ahokas, H., and Manninen, M.-L. Thermostabilities of grain β-amylase and β-glucanase in Finnish landrace barleys and their putative past adaptedness. Hereditas 132:111–118, 2000.
  • Ajerio, K. O., Booer, C. D., and Proudlove, M. O. Aspects of the malting of sorghum. Ferment 6:339–341, 1993.
  • Aniche, G. N., and Palmer, G. H. Development of amylolytic activities in sorghum and barley malts. J. Inst. Brew. 96:377–379, 1990.
  • Arends, A. M., Fox, G. P., Henry, R. J., Marschke, R. J., and Simmons, M. H. Genetic and environmental variation in the diastatic power of Australian barley. J. Cereal Sci. 21:63–70, 1995.
  • Baureithel, K. H., Buter, K. B., Engesser, A., Burkard, W., Schaffner, W., Ekstrom, G., Nettles, M., Takaichi, S., Tamura, Y., Azegam, K., Yamamoto, Y., Ishidsu, J.-I., Agu, R. C., and Palmer, G. H. The effects of temperature on the modification of sorghum and barley during malting. Process Biochem. 32:501–507, 1997.
  • Bertoft, B., Andtfolk, C., and Kulp, S.-E. Effect of pH, temperature and calcium ions on barley malt α-amylase isozymes. J. Inst. Brew. 90:298–302, 1984.
  • Beta, T., Rooney, L. W., Marovantsanga, L. T., and Taylor, J. R. N. Effect of chemical treatment on polyphenol and malt quality in sorghum. J. Cereal Sci. 31:295–302, 2000.
  • Beta, T., Rooney, L. W., and Waniska, R. D. Malting characteristics of sorghum cultivars Cereal Chem. 72:533–538, 1995.
  • Brennan, C. S., Amor, M. A., Harris, N., Smith, D., Cantrell, I., Griggs, D., and Shewry, P. R. Cultivar differences in modification patterns of protein and carbohydrate reserves during malting of barley. J. Cereal Sci. 26:83–93, 1997.
  • Cohen, S. S. Practical Statistics. Edward Arnold, London, 1988.
  • Delcour, J. A., and Verschaeve, S. G. Malt diastatic activity. Part 2. A modified EBC diastatic power assay for the selective estimation of β-amylase activity: Time and temperature dependence of the release of sugars. J. Inst. Brew. 93:296–301, 1987.
  • Dewar, J., and Taylor, J. R. N. New malting technology. In: Proc. Int. Sorghum Conf. A. L. Whitear, ed. The Institute of Brewing, London. Pp. 51–56, 1993.
  • Dewar, J., Taylor, J. R. N., and Berjak, P. Determination of improved steeping conditions for sorghum malting. J. Cereal Sci. 26:129–136, 1997.
  • Duffour, J. P., Melotte, L., and Srebrnik, S. Sorghum malts for the production of a lager beer. J. Am. Soc. Brew. Chem. 50:110–119, 1992.
  • Dyer, T. A., and Novellie, L. Kaffircorn malting and brewing studies. XVI. The distribution of activity of alpha- and beta-amylases in germinating kaffircorn. J. Sci. Food Agric. 17:449–456, 1966.
  • Eglinton, J. K., Evans, D. E., Brown, A. H. D., and Lance, R. C. M. Technique for the examination of isozyme variation in malting quality enzyme. In: Proc. 45th Aust. Cereal Chem. Conf. Y. A. Williams and C. W. Wrigley, eds. Royal Australian Chemical Institute, Melbourne. Pp. 530–533, 1995.
  • Elmaki, H. B., Babiker, E. E., and El Tinay, A. H. Changes in chemical composition, grain malting, starch and tannin contents and protein digestibility during germination of sorghum cultivars. Food Chem. 64:331–336, 1999.
  • Erdal, K., Jensen, M. O., Kristensen, M., Krough, J. J., Riis, P., and Vaag, P. Total β-amylase in barley used as a screening criterion for combined amylolytic activity in malt. Proc. Eur. Brew. Conv. Congr. 24:63–70, 1993.
  • EtokAkpan, O. U. Amylase potential and wort fermenting components of Nigerian sorghum and barley. World J. Microbiol. Biotechnol. 8:287–289, 1992.
  • EtokAkpan, O. U. Convertibility of IoB, EBC and SABS methods for sorghum DP measurements using correlation coefficients. J. Inst. Brew. 110:335–339, 2004.
  • EtokAkpan, O. U., and Palmer, G. H. A simplified diamylase procedure for the estimation of α-amylase and diastatic activity. J. Inst. Brew. 96:89–91, 1990.
  • EtokAkpan, O. U., and Palmer, G. H. Comparative studies of the development of endosperm-degrading enzymes in malting sorghum and barley. World J. Microbiol. Biotechnol. 6:406–417, 1990.
  • Evans, D. E., Collins, E., Eglinton, J., and Wilhelmson, A. Assessing the impact of the level of diastatic power enzymes and their thermostability on the hydrolysis of starch during wort production to predict malt fermentability. J. Am. Soc. Brew. Chem. 63:185–198, 2005.
  • Evans, D. E., MacLeod, L. C., Eglinton, J. K., Gibson, C. E., Zhang, X., Wallace, W., Skerritt, J. H., and Lance, R. C. M. Measurement of β-amylase in malting barley (Hordeum vulgare). I. Development of a quantitative ELISA for beta-amylase. J. Cereal Sci. 26:229–239, 1997.
  • Evans, D. E., van Wegen, B., Ma, Y., and Eglinton, J. The impact thermostability of α-amylase, β-amylase, and limit dextrinase on potential wort fermentability. J. Am. Soc. Brew. Chem. 61:210–218, 2003.
  • Ezeogu, L. I., and Okolo, B. N. Effects of final warm water steep and air rest cycles on malt properties of three improved Nigeria sorghum cultivars. J. Inst. Brew. 100:335–338, 1994.
  • Ezeogu, L. I., and Okolo, B. N. Effects of air rest periods on malting sorghum response to final warm water steep. J. Inst. Brew. 101:39–45, 1995.
  • Ezeogu, L. I., and Okolo, B. N. Relationship between sorghum malt quality characteristics and nature of alkaline steep liquor. J. Inst. Brew. 105:39–54, 1999.
  • Georg-Kramer, J. E., Mundstock, E. C., and Cavalli-Molina, S. Developmental expression of amylases during barley malting. J. Cereal Sci. 33:279–288, 2001.
  • Gibson, T. S., Solah, V., Glennie-Holmes, M. R., and Taylor, H. R. Diastatic power in malted barley: Contributions of malt parameters to its development and the potential of barley grain β-amylase to predict malt diastatic power. J. Inst. Brew. 101:277–280, 1995.
  • Hardie, D. G., Manners, D. J., and Yellowlees, D. The limit dextrinase from malted sorghum (Sorghum vulgare). Carbohydr. Res. 50:75–85, 1976.
  • Ilori, M. O., Akingbala, J. O., Oguntimein, G. B., and Ogundiwin, J. O. Effect of grain bed thickness, duration of steeping and germination on the malting properties of improved Nigerian sorghum varieties. Lebensm. Wiss. Technol. 23:505–512, 1990.
  • International Association of Cereal Science and Technology (ICC). Method 303: Simple and specific assay for α-amylase, β-amylase and β-glucanase. ICC Standard Methods. The Association, Vienna, 1998.
  • Iwuoha, C. I., and Aina, J. O. Effects of steeping condition and germination time on alpha-amylase activity, phenolics content and malting loss of Nigerian local red and hybrid short Kaura sorghum malts. Food Chem. 58:289–295, 1997.
  • Jayatissa, P. M., Pathirana, R. A., and Sivayogasundaram, R. Malting quality of Sri Lankan varieties of sorghum. J. Inst. Brew. 86:18–20, 1980.
  • Kaneko, T., Kihara, M., and Ho, K. Genetic analysis of β-amylase thermostability to develop a DNA marker for malt fermentability improvement in barley Hordeum vulgare. Plant Breed. 119:197–201, 2000.
  • Kihara, M., Kaneko, T., and Ito, K. Geographical variation of β-amylase thermostability among varieties of barley (Hordeum vulgare) and β-amylase deficiency. Plant Breed. 118:453–455, 1999.
  • Kreis, M. M., Williamson, Shewry, P. R., Sharp, P., and Gale, M. Identification of a second locus encoding β-amylase on chromosome 2 of barley. Genet. Res. 51:13–16, 1988.
  • Lauriere, C., Doyen, C., Thevenot, C., and Daussant, J. β-Amylase in cereals: A study of the maize β-amylase system. Plant Physiol. 100:877–893, 1992.
  • Malysheva, L., Ganal, M. W., and Röder, M. S. Evaluation of cultivated barley (Hordeum vulgare) germplasm for the presence of thermostable alleles of β-amylase. Plant Breed. 123:128–131, 2004.
  • Mitsui, T., Yamaguchi, J., and Akazawa, T. Physicochemical and serological characterization of rice α-amylase isoforms and identification of their corresponding genes. Plant Physiol. 110:1395–1404, 1985.
  • Mitsunaga, S., Kawakami, O., Tomoyo, N., Yamaguchi, J., Fukui, K., and Mitsui, T. Polymorphism in rice amylases at an early stage of seed germination. Biosci. Biotechnol. Biochem. 65:662–665, 2001.
  • Morrall, P., Boyd, H. K., Taylor, J. R. N., and van Der-Walt, W. H. Effect of germination time, temperature and moisture on malting of sorghum (Sorghum bicolor). J. Inst. Brew. 92:439–445, 1986.
  • Mundy, J. Isolation and characterisation of two immunologically distinct forms of β-amylase and β-amylase from seeds of germinated Sorghum bicolor (L). Carlsberg Res. Commun. 47:263–274, 1982.
  • Novellie, L. Kafircorn malting and brewing studies—Determination of amylase in kafircorn malts. J. Sci. Food Agric. 10:441–449, 1959.
  • Novellie, L. Kafircorn malting and brewing studies—Occurrence of beta-amylase in kafircorn malts. J. Sci. Food Agric. 11:408–421, 1960.
  • Novellie, L. Kafircorn malting and brewing studies. XI. Effect of malting conditions on the diastatic power of kafircorn malts. J. Sci. Food Agric. 13:115–120, 1962.
  • Novellie, L. Kafircorn malting and brewing studies. XII. Effect of malting conditions on malting losses and total amylases activity. J. Sci. Food Agric. 13:121–123, 1962.
  • Obeta, J. A. N., Okungbowa, J., and Ezeogu, L. I. Malting of sorghum: Further studies on factors influencing α-amylase activity. J. Inst. Brew. 106:295–304, 2000.
  • Ohiokpehai, O. Evaluation of malting characteristics of sorghum cultivars for beverage production. IOB Proc. Cent. South. Afr. Sect. Conv. 3:478–485, 1991.
  • Okolo, B. N., and Ezeogu, L. I. Duration of final warm water steep as a factor influencing some carbohydrate related properties of sorghum malt. J. Inst. Brew. 101:267–274, 1995.
  • Okolo, B. N., and Ezeogu, L. I. Effects of air-rest periods on the mobilization of sorghum reserve proteins. J. Inst. Brew. 101:463–468, 1995.
  • Okolo, B. N., and Ezeogu, L. I. Enhancement of the amylolytic potential of sorghum malts by alkaline steep treatment. J. Inst. Brew. 102:79–85, 1996.
  • Okon, E. U., and Uwaifo, A. O. Evaluation of malting sorghums. II. The development and assessment of the saccharogenic activities of the alpha- and beta-amylases. Brew. Dig. 60:27–29, 1985.
  • Okungbowa, J., Obeta, J. A. N., and Ezeogu, L. I. Sorghum β-amylase production: Relationship with grain cultivar, steep regime, steep liquor composition and kilning temperature. J. Inst. Brew. 108:362–370, 2002.
  • Owuama, C. I. Sorghum: A cereal with lager beer brewing potential. World J. Microbiol. Biotechnol. 13:253–260, 1997.
  • Palmer, G. H. Cereals in malting and brewing. In: Cereal Science and Technology. G. H. Palmer, ed. Aberdeen University Press, Aberdeen, UK. Pp. 161–242, 1989.
  • Palmer, G. H. Sorghum—Food, beverage and brewing potentials. Proc. Biochem. 27:145–153, 1992.
  • Palmer, G. H., and Bathgate, G. N. Malting and brewing. In: Recent Advances in Cereal Science and Technology. Y. Pomeranz, ed. AACC International, St. Paul, MN. Vol. 1, pp. 237–324, 1976.
  • Palmer, G. H., EtokAkpan O. U., and Igyor, M. A. Review: Sorghum as brewing material. MIRCEN J. Appl. Microbiol. Biotechnol. 5:265–275, 1989.
  • Pathirana, R. A., Shivayogasundaram, K., and Jayatissa, P. M. Optimization of conditions for malting of sorghum. J. Food Sci. Technol. 20:108–112, 1983.
  • Raschke, A. M., Taylor, J., and Taylor, J. R. N. Use of falling number and rapid visco analyser instruments to estimate sorghum diastatic power. J. Cereal Sci. 21:97–102, 1995.
  • Ratnavathi, C. V., and Ravi, S. B. Effect of different durations of steeping and malting on the production of alpha-amylase in sorghum. J. Cereal Sci. 14:287–296, 1991.
  • Robins, D. J., and Egan, B. Failure of mercuric chloride to selectively inhibit β-amylase in sorghum malt. J. Inst. Brew. 98:383–385, 1992.
  • Ross, H. A., Sungurtas, J., Ducreux, L., Swanston, J. S., Davies, H. V., and Dougall, G. J. Limit dextrinase in barley cultivars of differing malting quality: Activity, inhibitors and limit dextrin profiles. J. Cereal Sci. 38:325–334, 2003.
  • Somogyi, M. Notes on sugar determination. J. Biol. Chem. 195:19–23, 1952.
  • Subramanian, V., Rao, N. S., Jambunathan, R., Murthy, D. S., and Reddy, B. V. S. The effect of mashing on the extractability of proteins and its relationship to diastatic activity in sorghum. J. Cereal Sci. 21:283–289, 1995.
  • Suhasini, A. W., Muralikrishna, G., and Malleshi, G. N. Free sugars and non-starch polysaccharide contents of good and poor malting varieties of wheat and their malts. Food Chem. 60:537–540, 1997.
  • Sun, Z., and Henson, C. A. A quantitative assessment of the importance of barley seed α-amylase, β-amylase, debranching enzyme and α-glucosidase in starch degradation. Arch. Biochem. Biophys. 284:298–308, 1991.
  • Taylor, J. R. N., and Robbins, D. J. Factors influencing β-amylase activity in sorghum malt. J. Inst. Brew. 99:413–416, 1993.
  • Traore, T., Mouquet, C., Icard-Verniere, C., Traore, A. S., and Treche, S. Changes in nutrient composition, phytate and cyanide contents and α-amylase activity during cereal malting in small production units in Ouagadougou (Burkina Faso). Food Chem. 88:105–114, 2004.
  • Urias-Lugo, D. A., and Serna Saldivar, S. O. Effect of amyloglucosidase on properties of lager beers produced from sorghum malt and waxy grits. J. Am. Soc. Brew. Chem. 63:63–68, 2005.
  • Villicaňa, M. T. O., and Saldivar, S. O. S. Production of lager beer from sorghum malt and waxy grits. J. Am. Soc. Brew. Chem. 62:140–146, 2004.
  • Wijngaard, H. H., Ulmer, H. M., Neumann, M., and Arendt, E. K. The effect of steeping time on the final malt quality of buckwheat. J. Inst. Brew. 111:275–281, 2005.
  • Yamaguchi, J., Itoh, S., Saitoh, T., Ikeda, A., Tashiro, T., and Nagato, Y. Characterisation of β-amylase and its deficiency in various rice cultivars. Theor. Appl. Genet. 98:32–38, 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.