77
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Improved Prediction of Malt Fermentability by Measurement of the Diastatic Power Enzymes β-Amylase, α-Amylase, and Limit Dextrinase: II. Impact of Barley Genetics, Growing Environment, and Gibberellin on Levels of α-Amylase and Limit Dextrinase in Malt

, , , &
Pages 14-22 | Published online: 01 Feb 2018

Literature Cited

  • Agu, R. C., Brosnan, J. M., Bringhurst, T. A., Palmer, G. H., and Jack, F. R. Influence of corn size distribution on the diastatic power of malted barley and its impact on other malt quality parameters. J. Agric. Food Chem. 55:3702–3707, 2007.
  • Arends, A. M., Fox, G. P., Henry, R. J., Marschke, R. J., and Symons, M. H. Genetic and environmental variation in the diastatic power of Australian barley. J. Cereal Sci. 21:63–70, 1995.
  • Axcell, B. C. Malt analysis—Prediction or predicament. Tech. Q. Master Brew. Assoc. Am. 35:28–30, 1998.
  • Bamforth, C. W. Barley and malt starch in brewing: A general review. Tech. Q. Master Brew. Assoc. Am. 40:89–97, 2003.
  • Bewley, J. D. Seed germination and dormancy. Plant Cell 9:1055–1066, 1997.
  • Briggs, D. E. Malting. In: Barley. Chapman and Hall, London. Pp. 526–559, 1978.
  • Briggs, D. E. Malts and Malting. Blackie Academic and Professional, London, 1998.
  • Briggs, D. E. Malt modification—A century of evolving views. J. Inst. Brew. 108:395–405, 2002.
  • Brown, A. H. D., and Jacobsen, J. V. Genetic basis and natural variation of α-amylase isozymes in barley. Genet. Res. Cambridge 40:315–324, 1982.
  • Collins, H. M., Swanston, J. S., Rossnagel, B. G., and Logue, S. J. An investigation of the relative rates of protein and carbohydrate modification of a number of international malting varieties grown in three countries. In: Proc. 9th Intl. Barley Genet. Symp. Brno, Czech Republic. Available online at www.ibgs.cz. Pp. 404–409, 2004.
  • Coventry, S., Collins, H. M., Barr, A. R., Jefferies, S. P., Chalmers, K. J., Logue, S. J., and Langridge, P. Use of putative QTLs and structural genes in marker assisted selection for diastatic power in malting barley (Hordeum vulgare L.). Aust. J. Agric. Res. 54:1241–1250, 2003.
  • Cullis, B. R., Smith, A. B., Panozzo, J. F., and Lim, P. Barley malt quality: Are we selecting the best? Aust. J. Agric. Res. 54:1261–1275, 2003.
  • Edney, M. J., Eglinton, J. K., Collins, H. M., Barr, A. R., Legge, W. G., and Rossnagel, B. G. Importance of endosperm modification for malt wort fermentability. J. Inst. Brew. 113:228–238, 2007.
  • Eglinton, J. K., Langridge, P., and Evans, D. E. Thermostability variation in alleles of barley beta-amylase. J. Cereal Sci. 28:301–309, 1998.
  • Enari, T. M., and Sopanon, T. Centenary review: Mobilization of endosperm reserves during the germination of barley. J. Inst. Brew. 92:25–31, 1986.
  • Erkkila, M. J., Leah, R., Ahokas, H., and Cameron-Mills, V. Allele dependant barley grain β-amylase activity. Plant Physiol. 117:679–685, 1998.
  • European Brewery Convention. Analytica–EBC. Verlag Hans Carl Getranke Fachverlag, Nurnberg, Germany, 1998.
  • Evans, D. E. A more cost- and labor-efficient assay for the combined measurement of the diastatic power enzymes β-amylase, α-amylase, and limit dextrinase. J. Am. Soc. Brew. Chem. 66:215–222, 2008.
  • Evans, D. E., and Bamforth, C. W. Beer foam: Achieving a suitable head. In: Handbook of Alcoholic Beverages. C. W. Bamforth, I. Russell, and G. G. Stewart, eds. Elsevier Science Publishing Co., Amsterdam. Pp. 1–60, 2008.
  • Evans, D. E., Collins, H. M., Eglinton, J. K., and Wilhelmson, A. Assessing the impact of the level of diastatic power enzymes and their thermostability on the hydrolysis of starch during wort production to predict malt fermentability. J. Am. Soc. Brew. Chem. 63:185–198, 2005.
  • Evans, D. E., Li, C., and Eglinton, J. K. A superior prediction of malt attenuation. Proc. Congr. Eur. Brew. Conv. 31:54–66, 2007.
  • Evans, D. E., Li, C., and Eglinton, J. K. Improved prediction of malt fermentability by the measurement of the diastatic power enzymes β-amylase, α-amylase, and limit dextrinase: I. Survey of the levels of diastatic power enzymes in commercial malts. J. Am. Soc. Brew. Chem. 66:223–232, 2008.
  • Evans, D. E., Li, C., and Eglinton, J. K. The properties and genetics of barley malt starch degrading enzymes. In: Quality, Genetics and Improvement of Barley Malting. G. Zhang and C. Li, eds. Springer Verlag, New York. In press.
  • Evans, D. E., van Wegen, B., Ma, Y., and Eglinton, J. K. The impact of the thermostability of α-amylase, β-amylase, and limit dextrinase on potential wort fermentability. J. Am. Soc. Brew. Chem. 61:210–218, 2003.
  • Filner, F., and Varner, J. E. A test for the de novo synthesis of enzyme: Density labeling with H2O18 of barley α-amylase induced by gibberellic acid. Proc. Natl. Acad. Sci. U.S.A. 58:1520–1526, 1967.
  • Fox, G. P., Panozzo, J. F., Li, C. D., and Lance, R. C. M. Molecular basis of barley quality. Aust. J. Agric. Res. 54:1081–1101, 2003.
  • Giese, H., and Hejgaard, J. Synthesis of salt-soluble proteins in barley: Pulse labelling study of grain filling in liquid-cultured detached spikes. Planta 161:172–177, 1984.
  • Gunkel, J., Voetz, M., and Rath, F. Effect of the malting barley variety (Hordeum vulgare L.) on fermentability. J. Inst. Brew. 108:355–361, 2002.
  • Gyllang, H., Satmark, L., and Martinson, E. The influence of some fungi on malt quality. Proc. Congr. Eur. Brew. Conv. 16:245–254, 1977.
  • Hardie, D. G. Control of carbohydrate formation by gibberellic acid in barley endosperm. Phytochemistry 14:1719–1722, 1975.
  • Harris, G., and Banasik, O. J. Effects of environment, variety, and season on barley quality. Cereal Chem. 29:148–155, 1952.
  • Hayes, P. M., Castro, A., Marquez-Cedillo, L., Corey, A., Henson, C., Jones, B. L., Kling, J., Mather, D., Matus, I., Rossi, C., and Sato, K. Genetic diversity inherited agronomic and malting quality traits. In: Diversity in Barley (Barley (Hordeum vulgare)). R. von Bothmer, T. von Hintum, H. Knupffer, and K. Sato, eds. Elsevier Science Publishing Co., Amsterdam. Pp. 201–226, 2003.
  • Hayter, A. M., and Riggs, T. J. Environmental and varietal differences in diastatic power and four associated characteristics of spring barley. J. Agric. Sci. 80:297–302, 1973.
  • Igartua, E., Hayes, P. M., Thomas, W. T. B., Meyer, R., and Mather, D. E. Genetic control of quantitative grain and malt traits in barley. In: Quality Improvement in Field Crops. A. S. Basra and L. S. Randhawa, eds. Hayworth Press, New York. Pp. 131–164, 2003.
  • Ingversen, J., Englyst, A., and Jorgensen, K. G. Evaluation of malting quality in a barley breeding program: Use of α-amylase and β-glucan levels in malt as preselection tools. J. Inst. Brew. 95:99–103, 1989.
  • Jacobsen, J. V., and Higgins, T. J. V. Characterization of the alpha-amylase synthesized by aleurone layers of Himalaya barley in response to gibberellic acid. Plant Physiol. 70:1647–1653, 1982.
  • Khursheed, B., and Rogers, J. L. Barley alpha-amylase genes: Quantitative comparison of steady-state mRNA levels from individual members of the two different families expressed in aleurone cells. J. Biol. Chem. 263:18953–18960, 1988.
  • Kihara, M., Kaneko, T., and Ito, K. Genetic variation of beta-amylase thermostability among varieties of barley, Hordeum vulgare L., and relation to malting quality. Plant Breed. 117:425–428, 1998.
  • Lee, W. J., and Pyler, R. E. Barley malt limit dextrinase: Varietal, environmental, and malting effects. J. Am. Soc. Brew. Chem. 42:11–17, 1984.
  • Li, C., Zhong, X.-Q., Eckstein, P., Rossnagel, B. G., and Scoles, G. J. A polymorphic micro satellite in the limit dextrinase gene of barley (Hordeum vulgare L.). Mol. Breed. 5:569–577, 1999.
  • Li, F., Zhang, J., Liu, H.-M., Tian, S.-J., Yang, X.-G., Ma, J.-X., and Sun, M.-X. Comparative study of activity and heat stability of limit dextrinase in 16 barley cultivars. Cereal Chem. 83:271–275, 2008.
  • MacGregor, A. W. Malting and brewing science: Challenges and opportunities. J. Inst. Brew. 102:97–102, 1996.
  • MacGregor, A. W., Bazin, S. L., and Izydorczyk, M. S. Gelatinization characteristics and enzyme susceptibility of different types of barley starch in the temperature range 48–75°C. J. Inst. Brew. 108:43–47, 2002.
  • MacGregor, A. W., Bazin, S. L., Macri, L. J., and Babb, J. C. Modeling the contribution of alpha-amylase, beta-amylase and limit dextrinase to starch degradation during mashing. J. Cereal Sci. 29:161–169, 1999.
  • MacGregor, A. W., LaBerge, D. E., and Meredith, W. O. S. Separation of alpha- and beta-amylase enzymes from barley malt by ion-exchange chromatography. Cereal Chem. 48:490–498, 1971.
  • MacGregor, A. W., Marchylo, B. A., and Kruger, J. E. Multiple α-amylase components in germinated cereal grains determined by isoelectric focusing and chromatofocusing. Cereal Chem. 65:326–333, 1988.
  • Muthukrishnan, S., Gill, B. S., Swegle, M., and Chandra, C. R. Structural genes for α-amylases are located on barley chromosomes 1 and 6. J. Biol. Chem. 259:13637–13639, 1984.
  • Nielsen, G., Johansen, H., Jemsen, J., and Hejgaard, J. Localization on barley chromosome 4 of genes coding for β-amylase (Bmy 1) and protein Z (Paz 1). Barley Genet. Newsl. 13:55–57, 1983.
  • Noots, I., Delcour, J. A., and Michiels, C. W. From field barley to malt: Detection and specification of microbiological activity for quality aspects. Crit. Rev. Microbiol. 25:121–153, 1998.
  • Powling, A., Islam, A. K. M. R., and Shepard, K. W. Isozymes in wheatbarley hybrid derivative lines. Biochem. Genet. 19:225–232, 1981.
  • Qi, J.-C., Zhang, G.-P., and Zhou, M.-X. Protein and hordein content in barley seeds as affected by nitrogen level and their relationship to beta-amylase activity. J. Cereal Sci. 43:102–107, 2006.
  • Ross, H. A., Sungurtas, J., Ducreux, L., Swanston, J. S., Davies, H. V., and McDougall, G. J. Limit dextrinase in barley cultivars of differing malting quality: Activity, inhibitors, and limit dextrin profiles. J. Cereal Sci. 38:325–334, 2003.
  • Rutger, J. N., Schaller, C. W., and Dickson, A. D. Variation and covariation in agronomic and malt quality characteristics of barley. II. Interrelationships of characters. Crop Sci. 7:325–326, 1967.
  • Schroeder, S. W., and MacGregor, A. W. Synthesis of limit dextrinase in germinated barley kernels and aleurone tissues. J. Am. Soc. Brew. Chem. 56:32–37, 1998.
  • Schwartz, P. B., Jones, B. L., and Steffenson, B. J. Enzymes associated with Fusarium infection of barley. J. Am. Soc. Brew. Chem. 60:130–134, 2002.
  • Sissons, M. J., Lance, R. C. M., and Sparrow, D. H. B. Studies on limit dextrinase in barley. 3. Limit dextrinase in developing kernels. J. Cereal Sci. 17:19–24, 1993.
  • Sjöholm, K., Macri, L. J., and MacGregor, A. W. Is there a role for limit dextrinase in mashing? Proc. Congr. Eur. Brew. Conv. 25:277–284, 1995.
  • Stenholm, K., and Home, S. A new approach to limit dextrinase and its role in mashing. J. Inst. Brew. 105:205–210, 1999.
  • Stenholm, K., Home, S., Pietila, K., Macri, L. J., and MacGregor, A. W. Starch hydrolysis in mashing. Proc. Conv. Inst. Brew, Asia Pac. Sect. 24:142–145, 1996.
  • Svensson, B., Mundy, J., Gibson, R. M., and Svendson, I. Partial amino acid sequences of α-amylase isozymes from barley malt. Carlsberg Res. Commun. 50:15–22, 1985.
  • Swanston, J. S. The use of electrophoresis in testing for high diastatic power in barley. J. Inst. Brew. 86:81–83, 1980.
  • Takano, T., Kiribuchi, C., and Takeda, G. Genetic analysis on banding patterns and activity of α-amylase isozymes in barley (Hordeum vulgare L.). Jpn. J. Breed. 38:65–71, 1988.
  • Takano, T., and Takeda, G. Polymorphism in α-amylase in germinating seed and malt of barley varieties detected by iso-electric focusing gel electrophoresis. Jpn. J. Breed. 35:9–16, 1985.
  • Tarr, A. W., Harasymow, S., and Young, K. Micromalting performance of two new barley varieties, Baudin and Hamelin. In: Proc. 11th Aust. Barley Tech. Symp. Available online at www.cdesign.com.au/proceedings_abts2003/papers/074TarrA.pdf. Presentation 74, 2003.
  • Tuomi, T., Laakso, S., and Rosenqvist, H. Plant hormones in fungi and bacteria from malting barley. J. Inst. Brew. 101:351–357, 1995.
  • Wang, J., Zhang, G., Chen, J., Shen, Q., and Wu, F. Genotypic and environmental variation in barley beta-amylase activity and its relation to protein content. Food Chem. 83:163–165, 2003.
  • Weining, S., Ko, L., and Henry, R. J. Polymorphisms in the α-amy1 gene of wild and cultivated barley revealed by the polymerase chain reaction. Theor. Appl. Genet. 89:509–513, 1994.
  • Yang, X., Westcott, S., Evans, D. E., Zhang, X.-Q., Lance, R. C. M., and Li, C. Alleles of limit dextrinase gene associated with the enzyme thermostability in barley. Mol. Breed. 23:61–74, 2009.
  • Yin, C., Zhang, G. P., Wang, J. M., and Chen, J.-X. Variation of beta-amylase activity in barley as affected by cultivar and environment and its relation to protein content and grain weight. J. Cereal Sci. 36:307–312, 2002.
  • Yin, X. C., Forster, J. E., Browers, M., Schroeder, S., Izydorczyk, M., MacGregor, A. W., Gruwel, M. L. H., and Abrams, S. An investigation on the deletion of potential loss of germination capacity during storage of malting barley. J. Am. Soc. Brew. Chem. 62:94–99, 2006.
  • Zhang, G. P., Chen, J. X., Dai, F., Wang, J. M., and Wu, F. B. The effect of cultivar and environment on β-amylase activity is associated with the change of protein content in barley grains. J. Agron. Crop Sci. 192:43–49, 2006.
  • Zhao, F. J., Fortune, S., Barbosa, V. L., McGrath, S. P., Stobart, R., Bilsborrow, P. E., Booth, E. J., Brown, A., and Robson, P. Effects of sulphur on yield and malting quality of barley. J. Cereal Sci. 43:369–377, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.