108
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

A Comparison of Barley Malt Amylolytic Enzyme Activities as Indicators of Malt Sugar ConcentrationsFootnote1

&
Pages 99-111 | Published online: 01 Feb 2018

Literature Cited

  • American Society of Brewing Chemists. Methods of Analysis, rev. 8th ed. Malt-6A Diastatic power. The Society, St. Paul, MN, 1996.
  • Anonymous. Diastatic activity (Lintner value). J. Inst. Brew. 12:1–12, 1906.
  • Arakawa, T., and Timasheff, S. N. Stabilization of protein structure by sugars. Biochemistry 121:6536–6544, 1982.
  • Arends, A. M., Fox, G. P., Henry, R. J., Marschke, R. J., and Symons, M. H. Genetic and environmental variation in the diastatic power of Australian barley. J. Cereal Sci. 21:63–70, 1995.
  • Bamforth, C. W. Barley and malting. In: Scientific Principles of Malting and Brewing. American Society of Brewing Chemists, St. Paul, MN. Pp. 21–44, 2006.
  • Bamforth, C. W. The components of barley and their degradation during malting and mashing. In: Scientific Principles of Malting and Brewing. American Society of Brewing Chemists, St. Paul, MN. Pp. 45–57, 2006.
  • Beers, E. P., and Duke, S. H. Characterization of α-amylase from shoots and cotyledons of pea (Pisum sativum L.) seedlings. Plant Physiol. 92:1154–1163, 1990.
  • Bertoff, E. Lintnerization of two amylose-free starches of A- and Bcrystalline types, respectively. Starch/Stärke 56:167–180, 2004.
  • Bewley, J. D., and Black, M. Mobilization of stored seed reserves. In: Seeds: Physiology of Development and Germination. Plenum Press, New York. Pp. 253–303, 1985.
  • Briggs, D. E. An introduction to malts and their uses. In: Malts and Malting. Blackie Academic & Professional, London. Pp. 1–34, 1998.
  • Briggs, D. E. The biochemistry of malting. In: Malts and Malting. Blackie Academic & Professional, London. Pp. 133–228, 1998.
  • Briggs, D. E. The principles of mashing. In: Malts and Malting. Blackie Academic & Professional, London. Pp. 229–244, 1998.
  • Briggs, D. E. Malt analysis. In: Malts and Malting. Blackie Academic & Professional, London. Pp. 579–614, 1998.
  • Buchholz, K., Kasche, V., and Bornscheuer, U. T. Introduction to enzyme technology. In: Biocatalysts and Enzyme Technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. Pp. 1–26, 2005.
  • Buttimer, E. T., and Briggs, D. E. Mechanisms of release of bound β-amylase. J. Inst. Brew. 106:71–82, 2000.
  • Clark, S. E., Hayes, P. M., and Henson, C. A. Effects of single nucleotide polymorphisms in the β-amylase 1 alleles from barley on functional properties of the enzymes. Plant Physiol. Biochem. 41:798–804, 2003.
  • Delcour, J. A., and Verschaeve, S. G. Malt diastatic activity. Part 2: A modified EBC-diastatic power assay for the selective estimation of β-amylase activity: Time and temperature dependence of the release of reducing sugars. J. Inst. Brew. 93:296–301, 1987.
  • Doehlert, D. C., and Duke, S. H. Specific determination of α-amylase activity in crude plant extracts containing β-amylase. Plant Physiol. 71:229–234, 1983.
  • Doehlert, D. C., Duke, S. H., and Anderson, L. Beta-amylases from alfalfa (Medicago sativa L.) roots. Plant Physiol. 69:1096–1102, 1982.
  • Duke, S. H., and Henson, C. A. Green malt osmolyte concentration as an early indicator of finished malt quality. J. Am. Soc. Brew. Chem. 65:145–150, 2007.
  • Duke, S. H., and Henson, C. A. A comparison of barley malt quality measurements and malt sugar concentrations. J. Am. Soc. Brew. Chem. 66:151–161, 2008.
  • Duke, S. H., Schrader, L. E., Miller, M. G., and Niece, R. L. Low temperature effects on soybean (Glycine max [L.] Merr. cv. Wells) free amino acid pools during germination. Plant. Physiol. 62:642–647, 1978.
  • Erkkilä, M. J., and Ahokas, H. Special barley β-amylase allele in a Finnish landrace line HA52 with high grain enzyme activity. Hereditas 134:91–95, 2001.
  • Erkkilä, M. J., Leah, R., Ahokas, H., and Cameronmills, V. Allele-dependent barley grain β-amylase activity. Plant Physiol. 117:679–685, 1998.
  • European Brewery Convention. Analytica-EBC. Fachverlag Hans Carl Getranke, Nürnberg, Germany, 1998.
  • Evans, D. E., Collins, H., Eglinton, J., and Wilhelmson, A. Assessing the impact of the level of diastatic enzymes and their thermostability on the hydrolysis of starch during wort production to predict malt fermentability. J. Am. Soc. Brew. Chem. 63:185–198, 2005.
  • Evans, D. E., Li, C., and Eglinton, J. A superior prediction of malt attenuation. Proc. 31st Congr. Eur. Brew. Conv. 31:54–66, 2007.
  • Evans, D. E., Wallace, W., Lance, R. C. M., and MacLeod, L. C. Measurement of beta-amylase in malting barley (Hordeum vulgare L.). II. The effect of germination and kilning. J. Cereal Chem. 26:241–250, 1997.
  • Fincher, G. B. Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:305–346, 1989.
  • Gibson, T. S., Solah, V., Glennie Holmes, M. R., and Taylor, H. R. Diastatic power in malted barley: Contributions of malt parameter to its development and the potential of barley grain β-amylase to predict malt diastatic power. J. Inst. Brew. 101:227–280, 1995.
  • Hall, R. D., Harris, G., and MacWilliam, I. C. Carbohydrates in malting and brewing. V. Further studies on the carbohydrates of barley, malt and wort. J. Inst. Brew. 62:232–238, 1956.
  • Hardie, D. G. Control of carbohydrate formation by gibberellic acid in barley endosperm. Phytochemistry 14:1719–1722, 1975.
  • Henson, C. A. Purification and properties of barley stem fructan exohydrylase. J. Plant Physiol. 134:186–191, 1989.
  • Henson, C. A., and Duke, S. H. Osmolyte concentration as an indicator of malt quality. J. Am. Soc. Brew. Chem. 65:59–62, 2007.
  • Henson, C. A., and Duke, S. H. A comparison of standard and nonstandard measures of malt quality. J. Am. Soc. Brew. Chem. 66:11–19, 2008.
  • Henson, C. A., Duke, S. H., Schwarz, P., and Horsley, R. Barley seed osmolyte concentration as an indicator of preharvest sprouting. J. Am. Soc. Brew. Chem. 65:125–128, 2007.
  • Henson, C. A., and Livingston, D. P., III. Characterization of a fructan exohydrolase purified from barley stems that hydrolyzes multiple fructofuranosidic linkages. Plant Physiol. Biochem. 36:715–720, 1998.
  • Hill, G. A., Macdonald, D. G., and Lang, X. α-Amylase inhibition and inactivation in barley malt during cold starch hydrolysis. Biotechnol. Lett. 19:1139–1141, 1997.
  • Institute of Brewing, Analysis Committee of the IoB. Recommended Methods of Analysis. IoB, London, 1998.
  • Jones, R. L. Inhibition of gibberellic acid-induced α-amylase formation by polyethylene glycol and mannitol. Plant Physiol. 43:442–444, 1969.
  • Jones, R. L., and Armstrong, J. E. Evidence for osmotic regulation of hydrolytic enzyme production in germinating barley seeds. Plant Physiol. 48:137–142, 1971.
  • Kakefuda, G., and Duke, S. H. Electrophoretic transfer as a technique for the detection and identification of plant amylolytic enzymes in polyacrylamide gels. Plant Physiol. 75:278–280, 1984.
  • Kakefuda, G., and Duke, S. H. Characterization of pea chloroplast d-enzyme (4-α-d-glucanotransferase). Plant Physiol. 91:136–143, 1989.
  • Kakefuda, G., Duke, S. H., and Hostak, M. S. Chloroplast and extrachloroplastic starch-degrading enzymes in Pisum sativum L. Planta 168:175–182, 1986.
  • Kristensen, M., Svensson, B., and Larsen, J. Purification and characterization of barley limit dextrinase during malting. Proc. Congr. Eur. Brew. Conv. 24:37–43, 1993.
  • Kuntz, R. J., and Bamforth, C. W. Time course for the development of enzymes in barley. J. Inst. Brew. 113:196–205, 2007.
  • Kunze, W. Malt production: Congress mash. In: Technology Brewing and Malting. VLB Berlin, Berlin. Pp. 157–159, 1999.
  • Lintner, C. J. Studien über Diastase. J. Prakt. Chem. 34:378–394, 1886.
  • Lizotte, P. A., Henson, C. A., and Duke, S. H. Purification and characterization of pea epicotyl β-amylase. Plant Physiol. 92:615–621, 1990.
  • Marchal, L. M., Jonkers, J., and Tramper, J. The use of freezing-point depression for the theoretical dextrose equivalent measurement. Starch/Stärke 48:220–224, 1996.
  • Marchal, L. M., van de Laar, A. M. J., Goetheer, E., Schimmelpennink, E. B., Bergsma, J., Beeftink, H. H., and Tramper, J. Effect of temperature on the saccharide composition obtained after α-amylosis of starch. Biotechnol. Bioeng. 63:344–355, 1999.
  • Muslin, E. H., Karpelenia, C. B., and Henson, C. A. The impact of thermostable α-glucosidase on the production of fermentable sugars during mashing. J. Am. Soc. Brew. Chem. 61:142–145, 2003.
  • Payen, A., and Persoz, J.-F. Mémoire sur la diastase, les principaux produits de ses réactions, et leurs applications aux art industriels. Ann. Chim. Phys. 2me Sér. 53:73–92, 1833.
  • Perata, P., Matsukura, D., Vernieri, P., and Yamaguchi, J. Sugar repression of gibberillin-dependent signaling pathway in barley embryos. Plant Cell 9:2197–2208, 1997.
  • Sandstedt, R. M., Kneen, E., and Blish, M. M. A standardized Wohlgemuth procedure for alpha-amylase activity. Cereal Chem. 16:712–723, 1939.
  • Schroeder, S. W., and MacGregor, A. W. Synthesis of limit dextrinase in germinated barley kernels and aleurone tissues. J. Am. Soc. Brew. Chem. 56:32–37, 1998.
  • Schwarz, P. B., Li, Y., Barr, J., and Horsley, R. D. Effect of operational parameters on the determination of laboratory extract and associated wort quality factors. J. Am. Soc. Brew. Chem. 65:219–228, 2007.
  • Sissons, M. J. Studies on the activation and release of bound limit dextrinase in malted barley. J. Am. Soc. Brew. Chem. 54:19–25, 1996.
  • Skadsen, R. W. Aleurones from a barley with low α-amylase activity become highly responsive to gibberellin when detached from the starchy endosperm. Plant Physiol. 102:195–203, 1993.
  • Sopanen, T., and Laurière, C. Release and activity of bound β-amylase in germinating barley grain. Plant Physiol. 89:244–249, 1989.
  • Statistical Analysis System. SAS Users Guide: Statistics, version 9.1. SAS Institute, Cary, NC, 2003.
  • Sun, Z., and Henson, C. A. Degradation of native starch granules by barley α-glucosidases. Plant Physiol. 94:320–327, 1990.
  • Sun, Z., and Henson, C. A. A quantitative assessment of the importance of barley seed α-amylase, β-amylase, debranching enzyme, and α-glucosidase in starch degradation. Arch. Biochem. Biophys. 284:298–305, 1991.
  • Thoma, J. A., Spradlin, J. E., and Dygert, S. Plant and animal amylases. In: The Enzymes, 3rd ed. P. S. Boyer, ed. Academic Press, New York. Vol. 5, pp. 115–189, 1971.
  • Ullrich, S. E., Han, F., and Jones, B. L. Genetic complexity of the malt extract trait in barley suggested by QTL analysis. J. Am. Soc. Brew. Chem. 55:1–4, 1997.
  • Wohlgemuth, J. Über eine neue Methode zur quantitativen Bestimmung des diastatischen Ferments. Biochem. Z. 9:1–9, 1908.
  • Yu, S.-M., Lee, Y.-C., Fang, S.-C., Chan, M.-T., Hwa, S.-F., and Liu, L.-F. Sugars act as signal molecules and osmotica to regulate the expression of α-amylase genes and metabolic activities in germinating cereal grains. Plant Mol. Biol. 30:1277–1289, 1996.
  • Zhang, G., Vankatachalam, M., and Hamaker, B. R. Structural basis for slow digestion property of native cereal starches. Biomacromolecules 7:3259–3266, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.