42
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of Reverse-Transcription PCR Detection of 16S rRNA and Tuf mRNA for Viable/Dead Discrimination of Beer-Spoilage Lactic Acid Bacteria

, &
Pages 101-106 | Published online: 05 Feb 2018

Literature Cited

  • Adams, M., O'Brien, P., and Taylor, G. Effect of the ethanol content of beer on the heat resistance of a spoilage Lactobacillus. J. Appl. Bacteriol. 66:491–495, 1989.
  • Asano, S., Suzuki, K., Iijima, K., Motoyama, Y., Kuriyama, H., and Kitagawa, Y. Effects of morphological changes in beer-spoilage lactic acid bacteria on membrane filtration in breweries. J. Biosci. Bioeng. 104:334–338, 2007.
  • Asano, S., Suzuki, K., Ozaki, K., Kuriyama, K., Yamashita, H., and Kitagawa, Y. Application of multiplex PCR to the detection of beer-spoilage bacteria. J. Am. Soc. Brew. Chem. 66:37–42, 2008.
  • Brandl, A., and Geiger, E. Microbiological quality control in breweries by PCR—A demonstration of applied methods. (CD) Proc. Congr. Eur. Brew. Conv. 29:1094–1104, 2003.
  • Cools, I., Uyttendaele, M., D'Haese, E., Nelis, H. J., and Debevere, J. Development of a real-time NASBA for the detection of Campylobacter jejuni cells. J. Microbiol. Methods 66:313–320, 2006.
  • Dean, A., and Belasco, J. G. Lost in translation: The influence of ribosomes on bacterial mRNA decay. Genes Dev. 19:2526–2533, 2005.
  • Deutscher, M. P. Degradation of RNA in bacteria: Comparison of mRNA and stable RNA. Nucleic Acids Res. 34:659–666, 2006.
  • de Vries, M. C., Vaughan, E. E., Kleerebezem, M., and de Vos, W. M. Optimising single cell activity assessment of Lactobacillus plantarum by fluorescent in situ hybridisation as affected by growth. J. Microbiol. Methods 59:109–115, 2004.
  • González-Escalona, N., Fey, A., Höfle, M. G., Espejo, R. T., and Guzmán, C. A. Quantitative reverse transcription polymerase chain reaction analysis of Vibrio cholerae cells entering the viable but non-culturable state and starvation in response to cold shock. Environ. Microbiol. 8:658–666, 2006.
  • Haakensen, M., Butt, L., Chaban, B., Deneer, H., Ziola, B., and Dowgiert, T. horA specific real-time PCR for detection of beer-spoilage lactic acid bacteria. J. Am. Soc. Brew. Chem. 65:157–165, 2007.
  • Huhtamella, S., Leinonen, M., Nimeinen, T., Fahnert, B., Myllykoski, L., Breitenstein, A., and Neubauer, P. RNA-based sandwich hybridisation method for detection of lactic acid bacteria in brewery samples. J. Microbiol. Methods 68:543–553, 2007.
  • Jespersen, L., and Jakobsen, M. Specific spoilage organisms in breweries and laboratory media for their detection. Int. J. Food Microbiol. 33:139–155, 2007.
  • Juvonen, R., Satokari, R., Mallison, K., and Haikara, A. Detection of spoilage bacteria in beer by polymerase chain reaction. J. Am. Soc. Brew. Chem. 57:99–103, 1999.
  • Ke, D., Picard, F. J., Martneau, F., Ménard, C., Roy, P. H., Oullette, M., and Bergeron, M. G. Development of a PCR assay for rapid detection of enterococci. J. Clin. Microbiol. 37:3497–3503, 1999.
  • Keer, J. T., and Birch, L. Molecular methods for the assessment of bacterial viability. J. Microbiol. Methods 53:175–183, 2003.
  • Kitis, M. Disinfection of wastewater with peracetic acid: A review. Environ. Int. 30:47–55, 2004.
  • McKillip, J. L., Jaykus, L.-A., and Drake, M. rRNA stability in heat-killed and UV-irradiated enterotoxigenic Staphylococcus aureus and Escherichia coli O157:H7. Appl. Environ. Microbiol. 64:4264–4268, 1998.
  • McKillip, J. L., Jaykus, L. A., and Drake, M. Nucleic acid persistence in heat-killed Escherichia coli O157:H7 from contaminated skim milk. J. Food Prot. 62:839–844, 1999.
  • Nocker, A., Sossa-Fernandez, P., Burr, M. D., and Camper A. K. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl. Environ. Microbiol. 73:5111–5117, 2007.
  • Norton, D.-W., and Batt, C. A. Detection of viable Listeria monocytogenes with a 5′ nuclease PCR assay. Appl. Environ. Microbiol. 65:2122–2127, 1999.
  • Nuyts, S., Van Mellaert, L., Lambin, P., and Anné, J. Efficient isolation of total RNA from Clostridium without DNA contamination. J. Microbiol. Methods 44:235–238, 2001.
  • Padmanabhan, S., Zhou, K., Chu, C. Y., Lim, R. W., and Lim, L. W. Overexpression, biophysical characterization, and crystallization of ribonuclease I from Escherichia coli, a broad-specificity enzyme in the RNase T2 family. Arch. Biochem. Biophys. 390:42–50, 2001.
  • Priest, F. G. Gram-positive brewery bacteria. In: Brewing Microbiology, 3rd ed. F. G. Priest and I. Campbell, eds. Kluwer Academic/ Plenum Publishers, New York. Pp. 181–217, 2003.
  • Sambrook, J., Fritsch, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
  • Satokari, R., Juvonen, R., von Wright, A., and Haikara, A. Detection of Pectinatus beer spoilage bacteria by using the polymerase chain reaction. J. Food Prot. 60:1571–1573, 1997.
  • Sheridan, G. E. C., Masters, C. I., Shallcross, J. A., and Mackey, B. M. Detection of mRNA by reverse-transcription-PCR as and indicator of viability in Escherichia coli cells. Appl. Environ. Microbiol. 64:1313–1318, 1998.
  • Sheridan, G. E. C, Szabo, E. A., and Mackey, B. M. Effect of post-treatment holding conditions on detection of tufA mRNA in ethanol treated Escherichia coli: Implications for RT-PCR-based indirect viability tests. Lett. Appl. Microbiol. 29:375–379, 1999.
  • Storgårds, E., Haikara, A., and Juvonen, R. Brewing control systems: Microbiological analysis. In: Brewing: New Technologies. C. W. Bamforth, ed. Woodhead Publishing Limited, Cambridge. Pp. 391–426, 2006.
  • Storgårds, E., Suihko, M.-L., Pot, B., Vanhonacker, K., Janssens, D., Broomfield, P. L. E., and Banks, J. G. Detection and identification of Lactobacillus lindneri from brewery environments. J. Inst. Brew. 104:47–54, 1998.
  • Sung, K., Hiett, K. L., and Stern, N. J. Heat-treated Campylobacter spp. and mRNA stability as determined by reverse transcriptase-polymerase chain reaction. Foodborne Pathol. Dis. 2:130–137, 2005.
  • Suzuki, K., Iijima, K., Asano, S., Kuriyama, H., and Kitagawa, Y. Induction of viable but nonculturable state in beer-spoilage lactic acid bacteria. J. Inst. Brew. 112:295–301, 2006.
  • Suzuki, K., Iijima, K., Sakamoto, K., Sami, M., and Yamashita, H. A review of hop resistance in beer spoilage lactic acid bacteria. J. Inst. Brew. 112:173–191, 2006.
  • Tolker-Nielsen, T., Halberg-Larsen, M., Kyed, H., and Molin, S. Effects of stress treatments on the detection of Salmonella typhimurium by in situ hybridization. Int. J. Food Microbiol. 35:251–258, 1997.
  • Vaitilingom, M., Gendre, F., and Brignon, P. Direct detection of viable bacteria, molds and yeasts by reverse transcriptase PCR in contaminated milk samples after heat treatment. Appl. Environ. Microbiol. 64:1157–1160, 1998.
  • van der Vliet, G. M. E., Schepers, P., Schukkink, R. A. F, van Gemen, B., and Klatser, P. R. Assessment of mycobacterial viability by RNA amplification. Antimicrob. Agents Chemother. 38:1959–1965, 1994.
  • Ventura, M., Canchaya, C., Meylan, V., Klaenhammer, T. R., and Zink, R. Analysis, characterization, and loci of the tuf genes in Lactobacillus and Bifidobacterium species and their direct application for species identification. Appl. Environ. Microbiol. 69:6908–6922, 2003.
  • Walter, J., Hertel, C., Tannock, G., Lis, C., Munro, K., and Hammes, W. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67:2578–2585, 2001.
  • Yaron, S., and Matthews, K. R. A reverse-transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: Investigation of specific targets. J. Appl. Microbiol. 92:633–640, 2002.
  • Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406–3015, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.