150
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Gluten, Celiac Disease, and Gluten Intolerance and the Impact of Gluten Minimization Treatments with Prolylendopeptidase on the Measurement of Gluten in Beer

, &
Pages 36-50 | Published online: 05 Feb 2018

Literature Cited

  • Ajith, A., Labuschagne, M. T., Malan, A. F., van Biljon, A., and Wentzel, B. Relationship between malting quality traits and hordeins as affected by timing of nitrogen fertilizer application. Cereal Chem. 87:393–397, 2010.
  • Alvarez, P. A., Mongeon, V. J., and Boye, J. I. Characterization of a gluten reference material: Wheat-contaminated oats. J. Cereal Sci. 57:418–423, 2013.
  • Anderson, R., Henry, M., Taylor, R., Duncan, E., Danoy, P., Costa, M., Addison, K., Tye-Din, J., Kotowicz, M., Knight, R., Pollock, W., Nicholson, G., Toh, B.-H., Brown, M., and Pasco, J. A novel serogenetic approach determines the community prevalence of celiac disease and informs improved diagnostic pathways. BMC Med. 11:188, 2013.
  • Anderson, R. P., Degano, P., Godkin, A. J., Jewell, D. P., and Hill, A. V. S. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat. Med. 6:337–342, 2000.
  • Anderson, R. P., Heel, D. A. v., Tye-Din, J. A., Barnardo, M., Salio, M., Jewell, D. P., and Hill, A. V. S. T-cells in peripheral blood after gluten challenge in coeliac disease. Gut 54:1217–1223, 2005.
  • Anderson, R. P., Jewell, D. P., and Hill, A. V. Peripheral blood T cells induced by gluten challenge in coeliac disease target a specific molecular motif and express a gut-homing integrin. Gastroenterology 120:A684, 2001.
  • Arentz-Hansen, E. H., McAdam, S. N., Molberg, O., Kristiansen, C., and Sollid, L. M. Production of a panel of recombinant gliadins for the characterisation of T cell reactivity in coeliac disease. Gut 46:46–51, 2000.
  • Arentz-Hansen, H., Korner, R., Molberg, O., Quarsten, H., Vader, W., Kooy, Y. M. C., Lundin, K. E. A., Koning, F., Roepstorff, P., Sollid, L. M., and McAdam, S. N. The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J. Exp. Med. 191:603–612, 2000.
  • Armstrong, M. J., Hegade, V. S., and Robins, G. Advances in coeliac disease. Curr. Opin. Gastroenterol. 28:104–112, 2012.
  • Aubrecht, E., and Biacs, P. A. Characterization of buckwheat grain proteins and its products. Acta Aliment. 30:71–80, 2001.
  • Australian Food News. Global gluten-free market set to grow. http://www.ausfoodnews.com.au/2010/07/13/global-gluten-free-market-set-to-grow.html
  • Ballabio, C., Uberti, F., Di Lorenzo, C., Brandolini, A., Penas, E., and Restani, P. Biochemical and immunochemical characterization of different varieties of amaranth (Amaranthus L. ssp.) as a safe ingredient for gluten-free products. J. Agric. Food Chem. 59:12969–12974, 2011.
  • Beissbarth, T., Tye-Din, J. A., Smyth, G. K., Speed, T. P., and Anderson, R. P. A Systematic approach for comprehensive t-cell epitope discovery using peptide libraries. Bioinformatics 21:I29–I37, 2005.
  • Belton, P. S., Delgadillo, I., Halford, N. G., and Shewry, P. R. Kafirin structure and functionality. J. Cereal Sci. 44:272–286, 2006.
  • Bethune, M. T., and Khosla, C. In: Methods in Enzymology, Vol. 502: Protein Engineering for Therapeutics, Pt A. K. D. Wittrup and G. L. Verdine, Eds. Elsevier, San Diego, CA. Pp. 241–271, 2012.
  • Biagi, F., Campanella, J., and Corazza, G. R. Follow up on celiac disease and the communion wafer. Nutr. Rev. 62:491, 2004.
  • Biagi, F., Campanella, J., Martucci, S., Pezzimenti, D., Ciclitira, P. J., Ellis, H. J., and Corazza, G. R. A milligram of gluten a day keeps the mucosal recovery away: A case report. Nutr. Rev. 62:360–363, 2004.
  • Biesiekierski, J. R., Newnham, E. D., Irving, P. M., Barrett, J. S., Haines, M., Doecke, J. D., Sheperd, S. J., Muir, J. G., and Gibson, P. R. Gluten causes gastrointestinal symptoms in subjects without coeliac disease: A double-blind randomised placebo-controlled trial. Am. J. Gastroenterol. 106:508–514, 2010.
  • Biesiekierski, J. R., Peters, S. L., Newnham, E. D., Rosella, O., Muir, J. G., and Gibson, P. R. No effects of gluten in patients with self-reported non-celiac gluten sensitivity following dietary reduction of low-fermentable, poorly-absorbed, short-chain carbohydrates. Gastroenterology 145:320–328, 2013.
  • Bordusa, F., and Jakubke, H.-D. The specificity of prolyl endopeptidase from Flavobacterium meningoseptum: Mapping the S' subsites by positional scanning via acyl transfer. Bioorg. Med. Chem. 6:1775–1780, 1998.
  • Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of dye binding. Anal. Chem. 72:248–254, 1976.
  • Breddam, K., and Sorensen, S. B. Isolation of carboxypeptidase III from malted barley by affinity chromatography. Carslberg Res. Commun. 52:275–283, 1987.
  • Breddam, K., Sorensen, S. B., and Ottesen, M. Isolation of carboxypeptidase II from malted barley by affinity chromatography. Carslberg Res. Commun. 50:199–209, 1985.
  • Brett, G. M., Mills, E. N. C., Parmar, S., Tatham, A. S., Shewry, P. R., and Morgan, M. R. A. Monoclonal antibodies that recognize the repeat motif of the S-poor prolamins. J. Cereal Sci. 12:245–255, 1990.
  • Brown, A. C. Gluten sensitivity: Problems of an emerging condition separate from celiac disease. Expert Rev. Gastroenterol. Hepatol. 6:43–55, 2012.
  • Brusic, V., Bajic, V. B., and Petrovsky, N. Computational methods for prediction of T-cell epitopes—a framework for modelling, testing, and applications. Methods 34:436–443, 2004.
  • Bucci, C., Zingone, F., Russo, I., Morra, I., Tortora, R., Pogna, N., Scalia, G., Iovino, P., and Ciacci, C. Gliadin does not induce mucosal inflammation or basophil activation in patients with non-celiac gluten sensitivity. Clin. Gastroenterol. Hepatol. 11:1294–1299, 2013.
  • Bugyi, Z., Török, K., Hajas, L., Adonyi, Z., Popping, B., and Tömösközi, S. Comparative study of commercially available gluten ELISA kits using an incurred reference material. Qual. Assur. Saf. Crops Foods 5:79–87, 2013.
  • Bugyi, Z., Török, K., Hajas, L., Adonyi, Z., Poms, R. E., Popping, B., Diaz-Amigo, C., Kerbach, S., and Tömösközi, S. Development of incurred reference material for improving conditions of gluten quantification. J. AOAC Int. 95:382–387, 2012.
  • Cabrera-Chavez, F., Iametti, S., Miriani, M., de la Barca, A. M. C., Mamone, G., and Bonomi, F. Maize prolamins resistant to peptictryptic digestion maintain immune-recognition by IgA from some celiac disease patients. Plant Foods Hum. Nutr. 67:24–30, 2012.
  • Camarca, A., Anderson, R. P., Mamone, G., Fierro, O., Facchiano, A., Costantini, S., Zanzi, D., Sidney, J., Auricchio, S., Sette, A., Troncone, R., and Gianfrani, C. Intestinal T cell responses to gluten peptides are largely heterogeneous: Implications for a peptide-based therapy in celiac disease. J. Immunol. 182:4158–4166, 2009.
  • Catassi, C., Fabiani, E., Iacono, G., D'agate, C., Francavilla, R., Biagi, F., Volta, U., Accomando, S., Picarelli, A., De Vitis, I., Pianelli, G., Gesuita, R., Carle, F., Mandolesi, A., Bearzi, I., and Fasano, A. A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am. J. Clin. Nutr. 85:160–166, 2007.
  • Catassi, C., Fabiani, E., Ratsch, I. M., Coppa, G. V., Giorgi, P. L., Pierdomenico, R., Alessandrini, S., Iwanejko, G., Domenici, R., Mei, E., Miano, A., Marani, M., Bottaro, G., Spina, M., Dotti, M., Montanelli, A., Barbato, M., Viola, F., Lazzari, R., Vallini, M., Guariso, G., Plebani, M., Cataldo, F., Traverso, G., Ughi, C., Chiaravalloti, G., Baldassarre, M., Scarcella, P., Bascietto, F., Ceglie, L., Valenti, A., Paolucci, P., Caradonna, M., Bravi, E., and Ventura, A. The coeliac iceberg in Italy. A multicentre antigliadin antibodies screening for coeliac disease in school-age subjects. Acta Paediatr. 85:29–35, 1996.
  • Catassi, C., Ratsch, I. M., Fabiani, E., Ricci, S., Bordicchia, F., Pierdomenico, R., and Giorgi, P. L. High prevalence of undiagnosed celiac disease in 5280 Italian students screened by antigoliadin antibodies. Acta Paediatr. 84:672–676, 1995.
  • Catassi, C., Ratsch, I. M., Fabiani, E., Rossini, M., Bordicchia, F., Candela, F., Coppa, G. V., and Giorgi, P. L. Celiac-disease in the year 2000—exploring the iceberg. Lancet 343:200–203, 1994.
  • Chambers, S. J., Brett, G. M., Mills, E. N. C., Morgan, M. R. A. Multiantigenic peptides as standards in immunoassays for complex proteins: Use of LGQQQPFPPQQPY in an enzyme-linked immunosorbent assay for gluten. Anal. Biochem. 292:301–305, 2001.
  • Codex Alimentarius. http://www.codexalimentarius.net/web/index_en.jsp, 2012.
  • Colgrave, M. L., Goswami, H., Howitt, C. A., and Tanner, G. J. Proteomics as a tool to understand the complexity of beer. Food. Res. Int. 54:1001–1012, 2013.
  • Colgrave, M. L., Goswami, H., H owitt, C. A., and Tanner, G. J. What is in a beer? Proteomic characterization and relative quantification of hordein (gluten) in beer. J. Proteome Res. 11:386–396, 2012.
  • Comino, I., Real, A., de Lourdes Moreno, M., Montes, R., Cebolla, ?., and Sousa, C. Immunological determination of gliadin 33-mer equivalent peptides in beers as a specific and practical analytical method to assess safety for celiac patients. J. Sci. Food Agric. 93:933–943, 2013.
  • Costea, M., Brenner, D. M., Tardif, F. J., Tan, Y. F., and Sun, M. Delimitation of Amaranthus cruentus L. and Amaranthus caudatus L. using micromorphology and AFLP analysis: An application in germplasm identification. Genet. Resour. Crop Evol. 53:1625–1633, 2006.
  • Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. WebLogo: A sequence logo generator. Genome Res. 14:1188–1190, 2004.
  • Daldegan, F., Rocher, A., Cameronmills, V., and Vonwettstein, D. The expression of serine carboxypeptidases during maturation and germination of the barley-grain. Proc. Natl. Acad. Sci. USA 91:8209–8213, 1994.
  • Davy, A., Sorensen, M. B., Svendsen, I., Cameron-Mills, V., and Simpson, D. J. Prediction of protein cleavage sites by the barley cysteine endoproteases ep-a and ep-b based on the kinetics of synthetic peptide hydrolysis. Plant Physiol. 122:137–145, 2000.
  • Davy, A., Svendsen, I., Sorensen, S. O., Sorensen, M. B., Rouster, J., Meldal, M., Simpson, D. J., and Cameron-Mills, V. Substrate specificity of barley cysteine endoproteases EP-A and EP-B. Plant Physiol. 117:255–261, 1998.
  • De Mesa-Stonestreet, J. N., Alavi, S., and Bean, S. R. Sorghum proteins: The concentration, isolation, modification, and food applications of kafirins. J. Food Sci. 75:R90–R104, 2010.
  • De Re, V., Caggiari, L., Tabuso, M., and Cannizzaro, R. The versatile role of gliadin peptides in celiac disease. Clin. Biochem. 46:552–560, 2013.
  • Diaz-Amigo, C., and Popping, B. Gluten current status and new analytical developments in support of the regulatory requirements. J. AOAC Int. 95:335–336, 2012.
  • Diaz-Amigo, C., and Popping, B. Labeling regulations, detection methods, and assay validation. J. AOAC Int. 95:337–348, 2012.
  • Diaz-Amigo, C., and Popping, B. Accuracy of ELISA detection methods for gluten and reference materials: A realistic assessment. J. Agric. Food Chem. 61:5681–5688, 2013.
  • Di Cagno, R., Barbato, M., Di Camillo, C., Rizzello, C. G., De Angelis, M., Giuliani, G., De Vincenzi, M., Gobbetti, M., and Cucchiara, S. Gluten-free sourdough wheat baked goods appear safe for young celiac patients: A pilot study. J. Pediatr. Gastroenterol. Nutr. 51:777–783, 2010.
  • Di Cagno, R., De Angelis, M., Auricchio, S., Greco, L., Clarke, C., De Vincenzi, M., Giovannini, C., D'archivio, M., Landolfo, F., Parrilli, G., Minervini, F., Arendt, E., and Gobbetti, M. Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl. Environ. Microbiol. 70:1088–1096, 2004.
  • Dicke, W. K., Weijers, H. A., and Kamer, J. H. v. D. Coeliac disease II. The presence in wheat of a factor having a deleterious effect in the causes of coeliac disease. Acta Paediatr. 42:34–42, 1953.
  • Dostalek, P., Gabrovska, D., Rysova, J., Mena, M. C., Hernando, A., Mendez, E., Chmelik, J., and Salplachta, J. Determination of gluten in glucose syrups. J. Food Compos. Anal. 22:762–765, 2009.
  • Dostalek, P., Hochel, I., Mendez, E., Hernando, A., and Gabrovska, D. Immunochemical determination of gluten in malts and beers. Food Addit. Contam. 23:1074–1078, 2006.
  • Edens, L., Dekker, P., van der Hoeven, R., Deen, F., de Roos, A., and Floris, R. Extracellular prolyl endoprotease from Aspergillus niger and its use in the debittering of protein hydrolysates. J. Agric. Food Chem. 53:7950–7957, 2005.
  • Edens, L., van der Laan, J. M., and Craig, H. D. Mechanisms and prevention by proline-specific proteases. Brauwelt Int. 3:157–162, 2005.
  • Ehren, J., Moron, B., Martin, E., Bethune, M. T., Gray, G. M., and Khosla, C. A food-grade enzyme preparation with modest gluten detoxification properties. PLoS One 4:e6313, 2009.
  • Fleckenstein, B., Molberg, Y., Qiao, S. W., Schmid, D. G., Von Der Mullbe, F., Elgstoen, K., Jung, G., and Sollid, L. M. Gliadin T cell epitope selection by tissue transglutaminase in celiac disease—role of enzyme specificity and pH influence on the transamidation versus deamidation reactions. J. Biol. Chem. 277:34109–34116, 2002.
  • Fontanini, D., and Jones, B. L. SEP-1—a subtilisin-like serine endopeptidase from germinated seeds of Hordeum vulgare L. cv. Morex. Planta 215:885–893, 2002.
  • Fowell, A. J., Thomas, P. W., Surgenor, S. L., and Snook, J. A. The epidemiology of coeliac disease in East Dorset 1993–2002: An assessment of the ‘coeliac iceberg’, and preliminary evidence of case clustering. QJM Int. J. Med. 99:453–460, 2006.
  • Gallagher, E., Gormley, T. R., and Arendt, E. K. Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci. Technol. 15:143–152, 2004.
  • Gass, J., and Khosla, C. Prolyl endopeptidases. Cell. Mol. Life Sci. 64:345–355, 2007.
  • Gass, J., Vora, H., Bethune, M. T., Gray, G. M., and Khosla, C. Effect of barley endoprotease EP-B2 on gluten digestion in the intact rat. J. Pharmacol. Exp. Ther. 318:1178–1186, 2006.
  • Gass, S. J., Bethune, M. T., Siegel, M., Spencer, A., and Khosla, C. Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology 133:472–480, 2007.
  • Gellrich, C., Schieberle, P., and Wieser, H. Biochemical characterisation and quantification of the storage protein (secalin) types in rye flour. Cereal Chem. 80:102–109, 2003.
  • Gianfrani, C., Auricchio, S., and Troncone, R. Adaptive and innate immune responses in celiac disease. Immunol. Lett. 99:141–145, 2005.
  • Gordon, S. R., Stanley, E. J., Wolf, S., Toland, A., Wu, S. J., Hadidi, D., Mills, J. H., Baker, D., Pultz, I. S., and Siegel, J. B. Computational design of an alpha-gliadin peptidase. J. Am. Chem. Soc. 134:20513–20520, 2012.
  • Greco, L., Gobbetti, M., Auricchio, R., Di Mase, R., Landolfo, F., Paparo, F., Di Cagno, R., De Angelis, M., Rizzello, C. G., Cassone, A., Terrone, G., Timpone, L., D'Aniello, M., Maglio, M., Troncone, R., and Auricchio, S. Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin. Gastroenterol. Hepatol. 9:24–29, 2011.
  • Green, P. H. R. Mortality in celiac disease, intestinal inflammation, and gluten sensitivity. J. Am. Med. Assoc. 302:1225–1226, 2009.
  • Green, P. H. R., Rostami, K., and Marsh, M. N. Diagnosis of coeliac disease. Best Pract. Res. Clin. Gastroenterol. 19:389–400, 2005.
  • Guerdrum, L. J., and Bamforth, C. W. Levels of gliadin in commercial beers. Food Chem. 129:1783–1784, 2011.
  • Guerdrum, L. J., and Bamforth, C. W. Prolamin levels through brewing and the impact of prolyl endoproteinase. J. Am. Soc. Brew. Chem. 70:35–38, 2012.
  • Haas-Lauterbach, S., Immer, U., Richter, M., and Oehler, E. Gluten fragment detection with a competitive ELISA. J. AOAC Int. 95:377–381, 2012.
  • Hadjivassiliou, M., Grunewald, R. A., Kandler, R. H., Chattopadhyay, A. K., Jarratt, J. A., Sanders, D. S., Sharrack, B., Wharton, S. B., and Davies-Jones, G. A. B. Neuropathy associated with gluten sensitivity. J. Neurol. Neurosurg. Psych. 77:1262–1266, 2006.
  • Halbmayr-Jech, E., Hammer, E., Fielder, R., Coutts, J., Rogers, A., and Cornish, M. Characterization of G12 sandwich ELISA, a next-generation immunoassay for gluten toxicity. J. AOAC Int. 95:372–376, 2012.
  • Hartmann, G., Koehler, P., and Wieser, H. Rapid degradation of gliadin peptides toxic for coeliac disease patients by proteases from germinating cereals. J. Cereal Sci. 44:368–371, 2006.
  • Hausch, F., Shan, L., Santiago, N. A., Gray, G. M., and Khosla, C. Intestinal digestive resistance of immunodominant gliadin peptides. Am. J. Physiol. Gastrointest. Liver Physiol. 283:G996–G1003, 2002.
  • Hill, A. S., and Skerritt, J. H. Determination of gluten in foods using a monoclonal antibody based competition enzyme immunoassay. Food. Agric. Immun. 2:21–35, 1990.
  • Hollen, E., Hogberg, L., Stenhammar, L., Falth-Magnusson, K., and Magnusson, K. E. Antibodies to oat prolamines (avenins) in children with coeliac disease. Scand. J. Gastroenterol. 38:742–746, 2003.
  • Inomata, N. Wheat allergy. Curr. Opin. Allergy Clin. Immunol. 9:238–243, 2009.
  • Ivarsson, A. The Swedish epidemic of coeliac disease explored using an epidemiological approach—some lessons to be learnt. Best Pract. Res. Clin. Gastroenterol. 19:425–440, 2005.
  • Jin, B., Li, L., Feng, Z. C., Li, B., Liu, G. Q., and Zhu, Y. K. Investigation of the relationship of malt protein and beer haze by proteome analysis. J. Food Process. Preserv. 36:169–175, 2012.
  • Jones, B. L. Endoproteases of barley and malt. J. Cereal Sci. 42:139–156, 2005.
  • Juhasz, A., Gell, G., Bekes, F., and Balazs, E. The epitopes in wheat proteins for defining toxic units relevant to human health. Funct. Integr. Genomics 12:585–598, 2013.
  • Juhasz, A., Gell, G., Sebestyen, E., Haraszi, R., Tamas, L., and Balazs, E. Brachypodium distachyon as a model for defining the allergen potential of non-prolamin proteins. Funct. Integr. Genomics 12:439–446, 2012.
  • Juhasz, T., Szeltner, Z., and Polgar, L. Properties of the prolyl oligopeptidase homologue from Pyrococcus furiosus. FEBS Lett. 580:3493–3497, 2006.
  • Kahlenberg, F., Sanchez, D., Lachmann, I., Tuckova, L., Tlaskalova, H., Mendez, E., and Mothes, T. Monoclonal antibody R5 for detection of putatively coeliac-toxic gliadin peptides. Eur. Food Res. Technol. 222:78–82, 2006.
  • Kamer, J. H. v., Weijers, H. A., and Dicke, W. K. Coeliac disease. IV. An investigation into the injurious constituents of wheat in connection with their action on patients with coeliac disease. Acta Paediatr. 42:223–231, 1953.
  • Kasarda, D. D. Can an increase in celiac disease be attributed to an increase in the gluten content of wheat as a consequence of wheat breeding? J. Agric. Food Chem. 61:1155–1159, 2013.
  • Kasarda, D. D., and D'ovidio, R. Deduced amino acid sequence of an alpha-gliadin gene from spelt wheat (spelta) includes sequences active in celiac disease. Cereal Chem. 76:548–551, 1999.
  • Kent, P. S. Is going gluten free the next fad diet? J. Renal Nutr. 23:e47–e50, 2013.
  • Kim, C. Y., Quarsten, H., Bergseng, E., Khosla, C., and Sollid, L. M. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc. Natl. Acad. Sci. USA 101:4175–4179, 2004.
  • Kiss, Z., Vecseri-Hegyes, B., Kun-Farkas, G., and Hoschke, A. Optimisastion of malting and mashing processes for the production of gluten-free beers. Acta Aliment. 40:67–78, 2011.
  • Larre, C., Lupi, R., Gombaud, G., Brossard, C., Branlard, G., Moneret-Vautrin, D. A., Rogniaux, H., and Denery-Papini, S. Assessment of allergenicity of diploid and hexaploid wheat genotypes: Identification of allergens in the albumin/globulin fraction. J. Proteomics 74:1279–1289, 2011.
  • Lastovickova, M., Mazanec, K., Benkovska, D., and Bobalova, J. Utilization of the linear mode of MALDI-TOF mass spectrometry in the study of glycation during the malting process. J. Inst. Brew. 116:245–250, 2011.
  • Leffler, D., Schuppan, D., Pallav, K., Najarian, R., Goldsmith, J. D., Hansen, J., Kabbani, T., and Dennis, M. Kinetics of the histological, serological and symptomatic responses to gluten challenge in adults with coeliac disease. Gut 62:996–1004, 2013.
  • Lopez, M., and Edens, L. Effective prevention of chill-haze in beer using an acid proline-specific endoprotease from Aspergillus niger. J. Agric. Food Chem. 53:7944–7949, 2005.
  • Mamone, G., Ferranti, P., Melck, D., Tafuro, F., Longobardo, L., Chianese, L., and Addeo, F. Susceptibility to transglutaminase of gliadin peptides predicted by a mass spectrometry-based assay. FEBS Lett. 562:177–182, 2004.
  • Marti, T., Molberg, O., Li, Q., Gray, G. M., Khosla, C., and Sollid, L. M. Prolyl endopeptidase-mediated destruction of T cell epitopes in whole gluten: Chemical and immunological characterization. J. Pharmacol. Exp. Ther. 312:19–26, 2005.
  • Marttila, S., Jones, B. L., and Mikkonen, A. differential localisation of 2 acid proteinases in germinating barley (Hordeum vulgare) seed. Physiol. Plant. 93:317–327, 1995.
  • Matysiak-Budnik, T., Candalh, C., Cellier, C., Dugave, C., Namane, A., Vidal-Martinez, T., Cerf-Bensussan, N., and Heyman, M. Limited efficiency of prolyl-endopeptidase in the detoxification of gliadin peptides in celiac disease. Gastroenterology 129:786–796, 2005.
  • Mena, M. C., Lombarda, M., Hernando, A., Mendez, E., and Albar, J. P. Comprehensive analysis of gluten in processed foods using a new extraction method and a competitive ELISA based on the R5 antibody. Talanta 91:33–40, 2012.
  • Mendez, E., Vela, C., Immer, U., and Janssen, F. W. Report of a collaborative trial to investigate the performance of the r5 enzyme linked immunoassay to determine gliadin in gluten-free food. Eur. J. Gastroenterol. Hepatol. 17:1053–1063, 2005.
  • Mickowska, B., Socha, P., Urminská, D., and Cieślik, E. Immunodetection, electrophoresis and amino acid composition of alcohol soluble proteins extracted from grains of selected varieties of pseudocereals, legumes, oat, maize and rice. Cereal Res. Commun. 41:160–169, 2013.
  • Mills, E. N. C., Field, J. M., Kauffman, J. A., Tatham, A. S., Shewry, P. R., and Morgan, M. R. A. Characterization of a monoclonal antibody specific for HMW subunits of glutenin and its use to investigate glutenin polymers. J. Agric. Food Chem. 48:611–617, 2000.
  • Mitea, C., Havenaar, R., Drijfhout, J. W., Edens, L., Dekking, L., and Koning, F. Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: Implications for coeliac disease. Gut 57:25–32, 2006.
  • Pastorello, E. A., Farioli, L., Conti, A., Pravettoni, V., Bonomi, S., Iametti, S., Fortunato, D., Scibilia, J., Bindslev-Jensen, C., Ballmer-Weber, B., Robino, A. M., and Ortolani, C. Wheat IgE-mediated food allergy in European patients: Alpha-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins—allergenic molecules recognized by double-blind, placebo-controlled food challenge. Int. Arch. Allergy Immunol. 144, 10–22, 2007.
  • Perrocheau, L., Rogniaux, H., Boivin, P., and Marion, D. Probing heat-stable, water-soluble proteins from barley to malt and beer. Proteomics 5:2849–2858, 2005.
  • Picarelli, A., Di Tola, M., Sabbatella, L., Gabrielli, F., Di Cello, T. E., Anania, M. C., Mastracchio, A., Silano, M., and De Vincenzi, M. Immunologic evidence of no harmful effect of oats in celiac disease. Am. J. Clin. Nutr. 74:137–140, 2001.
  • Piper, J. L., Gray, G. M., and Khosla, C. Effect of prolyl endopeptidase on digestive-resistant gliadin peptides in vivo. J. Pharmacol. Exp. Ther. 311:213–219, 2004.
  • Pontieri, P., Mamone, G., De Caro, S., Tuinstra, M. R., Roemer, E., Okot, J., De Vita, P., Ficco, D. B. M., Alifano, P., Pignone, D., Massardo, D. R., and Del Giudice, L. Sorghum, a healthy and gluten-free food for celiac patients as demonstrated by genome, biochemical, and immunochemical analyses. J. Agric. Food Chem. 61:2565–2571, 2013.
  • Pyle, G. G., Paaso, B., Anderson, B. E., Allen, D. D., Marti, T., Li, Q., Siegel, M., Khosla, C., and Gray, G. M. Effect of pretreatment of food gluten with prolyl endopeptidase on gluten-induced malabsorption in celiac sprue. Clin. Gastroenterol. Hepatol. 3:687–694, 2005.
  • Real, A., Comino, I., de Lorenzo, L., Merchan, F., Gil-Humanes, J., Gimenez, M. J., Lopez-Casado, M. A., Torres, M. I., Cebolla, A., Sousa, C., Barro, F., and Piston, F. Molecular and immunological characterization of gluten proteins isolated from oat cultivars that differ in toxicity for celiac disease. PLoS One 7:e48365, 2012.
  • Rechinger, K. B., Bougri, O. V., and Cameron-Mills, V. Evolutionary relationship of the members of the sulphur-rich hordein family revealed by common antigenic determinants. Theor. Appl. Genet. 85:829–840, 1993.
  • Rizzello, C. G., De Angelis, M., Di Cagno, R., Camarca, A., Silano, M., Losito, A., De Vincenzi, M., De Bari, M. D., Palmisano, F., Maurano, F., Gianfrani, C., and Gobbetti, M. Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: New perspectives for celiac disease. Appl. Environ. Microbiol. 73:4499–4507, 2007.
  • Rumbo, M., Margheritis, A. I., Chirdo, F. G., Giorgieri, S. A., Fossati, C. A., and Anon, M. C. Fractionation of secalins and hordeins by preparative electrophoresis at acid pH. Eur. Food Res. Technol. 214:198–201, 2002.
  • Sapone, A., Bai, J. C., Ciacci, C., Dolinsek, J., Green, P. H. R., Hadjivassiliou, M., Kaukinen, K., Rostami, K., D.S., S., Schumann, M., Ullrich, R., Villalta, D., Volta, U., Catassi, C., and Fasano, A. Spectrum of gluten-related disorders: Consensus on new nomenclature and classification. Biomed. Central Med. 10:13, 2012.
  • Shan, L., Martin, T., Sollid, L. M., Gray, G. M., and Khosla, C. Comparative biochemical analysis of three bacterial prolyl endopeptidases: Implications for coeliac sprue. Biochem. J. 383:311–318, 2004.
  • Shan, L., Mathews, I., and Khosla, C. Structural and mechanistic analysis of two prolyl endopeptidases: Role of interdomain dynamics in catalysis and specificity. Proc. Natl. Acad. Sci. USA 102:3599–3604, 2005.
  • Shan, L., Molberg, O., Parrot, I., Hausch, F., Filiz, F., Gray, G. M., Sollid, L. M., and Khosla, C. Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279, 2002.
  • Shan, L., Qiao, S. W., Arentz-Hansen, H., Molberg, O., Gray, G. M., Sollid, L. M., and Khosla, C. Identification and analysis of multivalent proteolytically resistant peptides from gluten: Implications for celiac sprue. J. Proteome Res. 4:1732–1741, 2005.
  • Shang, H. Y., Wei, Y. M., Long, H., Yan, Z. H., and Zheng, Y. L. Identification of LMW glutenin-like genes from Secale sylvestre host. Russ. J. Genet. 41:1372–1380, 2005.
  • Sharma, G. M. Immunoreactivity and detection of wheat proteins by commercial ELISA kits. J. AOAC Int. 95:364–371, 2012.
  • Shewry, P. R. Avenins: The prolamins of oats. In: Seed Proteins P. R. Shewry and R. Casey, Eds. Klewer: London. Pp. 79–92, 1999.
  • Shewry, P. R., Halford, N. G., Belton, P. S., and Tatham, A. S. The structure and properties of gluten: An elastic protein from wheat grain. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 357:133–142, 2002.
  • Shewry, P. R., Tatham, A. S., and Halford, N. G. In: Seed Proteins. P. R. Shewry and R. Casey, Eds. Klewer: London. Pp. 35–78, 1999.
  • Shigemitsu, T., Saito, Y., Morita, S., and Satoh, S., Masumura, T. Separation and identification of rice prolamins by two-dimensional gel electrophoresis and amino acid sequencing. Biosci. Biotechnol. Biochem. 76:594–597, 2012.
  • Siegel, M., Bethune, M. T., Gass, J., Ehren, J., Xia, J., Johannsen, A., Stuge, T. B., Gray, G. M., Lee, P. P., and Khosla, C. Rational design of combination enzyme therapy for celiac sprue. Chem. Biol. 13:649–658, 2006.
  • Simpson, D. J. Proteolytic degradation of cereal prolamins—the problem with proline. Plant Sci. 161:825–838, 2001.
  • Skerritt, J. H., and Hill, A. S. Enzyme-immunoassay for determination of gluten in foods—collaborative study. J. Assoc. Off. Anal. Chem. 74:257–264, 1991.
  • Skerritt, J. H., Hill, A. S., and Andrews, J. L. Antigenicity of wheat prolamins: Detailed epitope analysis using a panel of monoclonal antibodies. J. Cereal Sci. 32:259–279, 2000.
  • Skovbjerg, H., Tarnow, L., Locht, H., and Parving, H. H. The prevalence of coeliac disease in adult Danish patients with type 1 diabetes with and without nephropathy. Diabetologia 48:1416–1417, 2005.
  • Sollid, L. M., Arentz-Hansen, H., Fleckenstein, B., Lundin, K. E. A., McAdam, S., Molberg, O., Qiao, S. W., and Quarsten, H. The T Cell Response to Gluten and Control of Coeliac Disease Development. In: Coeliac Disease: Proceedings of the Xth International Symposium on Coeliac Disease, Paris. John Libbey Eurotext, Esher, UK, 2003.
  • Sollid, L. M., Molberg, O., McAdam, S., and Lundin, K. E. A. Autoantibodies in coeliac disease: Tissue transglutaminase—guilt by association? Gut 41:851–852, 1997.
  • Sollid, L. M., Qiao, S. W., Anderson, R. P., Gianfrani, C., and Koning, F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64:455–460, 2012.
  • Song, R., Llaca, V., Linton, E., and Messing, J. Sequence, regulation, and evolution of the maize 22-kD alpha-Zein gene family. Genome Res. 11:1817–1825., 2001.
  • Srinivasan, U., Jones, E., Carolan, J., and Feighery, C. Immunohistochemical analysis of coeliac mucosa following ingestion of oats. Clin. Exp. Immunol. 144:197–203, 2006.
  • Stenman, S. M., Venalainen, J. I., Lindfors, K., Auriola, S., Mauriala, T., Kaukovirta-Norja, A., Jantunen, A., Laurila, K., Qiao, S., Sollid, L. M., Mannisto, P. T., Kaukinen, K., and Maki, M. Enzymatic detoxification of gluten by germinating wheat proteases: Implications for new treatment of celiac disease. Ann. Med. 41:390–400, 2009.
  • Stepniak, D., Koning, F. Celiac disease—sandwiched between innate and adaptive immunity. Hum. Immunol. 67:460–468, 2006.
  • Stepniak, D., Spaenij-Dekking, L., Mitea, C., Moester, M., de Ru, A., Baak-Pablo, R., van Veelen, P., Edens, L., and Koning, F. Highly efficient gluten degradation with a newly identified prolyl endoprotease: Implications for celiac disease. Am. J. Physiol. Gastrointest. Liver Physiol. 291:G621–G629, 2006.
  • Storsrud, S., Olsson, M., Lenner, R. A., Nilsson, L. A., Nilsson, O., and Kilander, A. Adult coeliac patients do tolerate large amounts of oats. Eur. J. Clin. Nutr. 57:163–169, 2003.
  • Tanner, G. J., Blundell, M. J., Colgrave, M. L., and Howitt, C. A. Quantification of hordeins by ELISA: The correct standard makes a magnitude of difference. PLoS One 8:e56456, 2013.
  • Tanner, G. J., Colgrave, M. L., Blundell, M. J., Goswami, H. P., and Howitt, C. A. Measuring Hordein (Gluten) in Beer. A comparison of ELISA and mass spectrometry. PLoS One 8:e56452, 2013.
  • Tanner, G. J., Howitt, C. A., Forrester, R. I., Campbell, P. M., Tye-Din, J. A., and Anderson, R. P. Dissecting the T-cell response to hordeins in coeliac disease can develop barley with reduced immunotoxicity. Aliment. Pharmacol. Ther. 32:1184–1191, 2010.
  • Tatham, A. S., Fido, R. J., Moore, C. M., Kasarda, D. D., Kuzmicky, D. D., Keen, J. N., and Shewry, P. R. Characterisation of the major orolamins of tef (Eragrostis tef) and finger millet (Eleusine coracana). J. Cereal Sci. 24:65–71, 1996.
  • Tatham, A. S., and Shewry, P. R. The S-poor prolamins of wheat, barley and rye. J. Cereal Sci. 22:1–16, 1995.
  • Tatham, A. S., and Shewry, P. R. Allergens in wheat and related cereals. Clin. Exp. Allergy 38:1712–1726, 2008.
  • Terp, N., Thomsen, K. K., Svendsen, I., Davy, A., and Simpson, D. J. Purification and characterization of hordolisin, a subtilisin-like serine endoprotease from barley. J. Plant Physiol. 156:468–476, 2000.
  • Tye-Din, J. A., Anderson, R. P., French, R. A., Brown, G. J., Hodsman, P., Siegel, M., Botwick, W., and Shreeniwas, R. The effects of ALV003 pre-digestion of gluten on immune response and symptoms in celiac disease in vivo. Clin. Immunol. 134:289–295, 2010.
  • Tye-Din, J. A., Stewart, J. A., Dromey, J. A., T., B., van Heel, D. A., Tatham, A., Henderson, K., Mannering, S. I., Gianfrani, C., Derek, P. Jewell, D. P., Hill, A. V. S., McCluskey, J., Jamie Rossjohn, J., and Anderson, R. P. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci. Translational Med. 2:41ra51, 2010.
  • Ulbricht, C., Chao, W., Nummy, K., Rusie, E., Tanguay-Colucci, S., Iannuzzi, C. M., Plammoottil, J. B., Varghese, M., and Weissner, W. Chia (Salvia hispanica): A systematic review by the natural standard research collaboration. Rev. Recent Clin. Trials 4:168–174, 2009.
  • Vader, L. W., de Ru, A., van der Wal, Y., Kooy, Y. M. C., Benckhuijsen, W., Mearin, M. L., Drijfhout, J. W., van Veelen, P., and Koning, F. Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J. Exp. Med. 195:643–649, 2002.
  • Vader, W., Kooy, Y., Van Veelen, P., De Ru, A., Harris, D., Benckhuijsen, W., Pena, S., Mearin, L., Drijfhout, J. W., and Koning, F. The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 122:1729–1737, 2002.
  • Wieser, H., and Koehler, P. Detoxification of gluten by means of enzymatic treatment. J. AOAC Int. 95:356–363, 2012.
  • Wild, D., Robins, G. G., Burley, V. J., and Howdle, P. D. Evidence of high sugar intake, and low fibre and mineral intake, in the gluten-free diet. Aliment. Pharmacol. Ther. 32:573–581, 2010.
  • Xie, Z. Z., Wang, C. Y., Wang, K., Wang, S. L., Li, X. H., Zhang, Z., Ma, W. J., and Yan, Y. M. Molecular characterization of the celiac disease epitope domains in alpha-gliadin genes in Aegilops tauschii and hexaploid wheats (Triticum aestivum L.). Theor. Appl. Genet. 121:1239–1251, 2010.
  • Zar, S., Benson, M. J., and Kumar, D. Food-specific serum IgG4 and IgE titers to common food antigens in irritable bowel syndrome. Am. J. Gastroenterol. 100:1550–1557, 2005.
  • Zevallos, V. F., Ellis, H. J., Suligoj, T., Herencia, L. I., and Ciclitira, P. J. Variable activation of immune response by quinoa (Chenopodium quinoa Willd.) prolamins in celiac disease. Am. J. Clin. Nutr. 96:337–344, 2012.
  • Zhang, N., and Jones, B. L. Development of proteolytic activities during barley malting and their localization in the green malt kernel. J. Cereal Sci. 22:147–155, 1995.
  • Zuo, X. L., Li, Y. Q., Li, W. J., Guo, Y. T., Lu, X. F., Li, J. M., and Desmon, P. V. Alterations of food antigen-specific serum immunoglobulins G and E antibodies in patients with irritable bowel syndrome and functional dyspepsia. Clin. Exp. Allergy 37:823–830, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.