176
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Impact of Extracellular Osmolality on Saccharomyces Yeast Populations during Brewing Fermentations

, &

Literature Cited

  • Adams, J., Paquin, C., Oeller, P. W., and Lee, L. W. Physiological characterization of adaptive clones in evolving populations of the yeast, Saccharomyces cerevisiae. Genetics 110:173–185, 1985.
  • Adams, J., Puskasrozsa, S., Simlar, J., and Wilke, C. M. Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. Curr. Genet. 22:13–19, 1992.
  • Ashrafi, K., Sinclair, D., Gordon, J. I., and Guarente, L. Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proc. Nat. Acad. Sci. U.S.A. 96:9100–9105, 1999.
  • Beney, L., and Gervais, P. Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Appl. Microbiol. Biotechnol. 57:34–42, 2001.
  • Blasco, L., Vinas, M., and Villa, T. G. Proteins influencing foam formation in wine and beer: The role of yeast. Int. Microbiol. 14:61–71, 2011.
  • Casey, G. P., Magnus, C. A., and Ingledew, W. M. High gravity brewing—Effects of nutrition on yeast composition, fermentative ability, and alcohol production. Appl. Environ. Microbiol. 48:639–646, 1984.
  • Chatterjee, M. T., Khalawan, S. A., and Curran, B. P. G. Cellular lipid composition influences stress activation of the yeast general stress response element (STRE). Microbiology 146:877–884, 2000.
  • Crowe, J. H., Crowe, L. M., and Chapman, D. Preservation of membranes in anhydrobiotic organisms—The role of trehalose. Science 223:701–703, 1984.
  • De Nadal, E., Alepuz, P. M., and Posas, F. Dealing with osmostress through MAP kinase activation. EMBO Rep. 3:735–740, 2002.
  • Dekoninck, T. M. L., Verbelen, P. J., Delvaux, F., Van Mulders, S. E., and Delvaux, F. R. The importance of wort composition for yeast metabolism during accelerated brewery fermentations. J. Am. Soc. Brew. Chem. 70:195–204, 2012.
  • Dmitrieva, N. I., and Burg, M. B. Osmotic stress and DNA damage. Method Enzymol. 428:241–252, 2007.
  • Dmitrieva, N. I., and Burg, M. B. Hypertonic stress response. Mutat. Res. 569:65–74, 2005.
  • Ekberg, J., Rautio, J., Mattinen, L., Vidgren, V., Londesborough, J., and Gibson, B. R. Adaptive evolution of the lager brewing yeast Saccharomyces pastorianus for improved growth under hyperosmotic conditions and its influence on fermentation performance. FEMS Yeast Res. 13:335–349, 2013.
  • Gabriel, P., Dienstbier, M., Matoulkova, D., Kosar, K., and Sigler, K. Optimised acidification power test of yeast vitality and its use in brewing practice. J. Inst. Brew. 114:270–276, 2008.
  • Gibson, B. R., Lawrence, S. J., Leclaire, J. P., Powell, C. D., and Smart, K. A. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol. Rev. 31:535–569, 2007.
  • Hirasawa, T., Ashitani, K., Yoshikawa, K., Nagahisa, K., Furusawa, C., Katakura, Y., Shimizu, H., and Shioya, S. Comparison of transcriptional responses to osmotic stresses induced by NaCl and sorbitol additions in Saccharomyces cerevisiae using DNA microarray. J. Biosci. Bioeng. 102:568–571, 2006.
  • Hohmann, S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66:300–372, 2002.
  • Hounsa, C. G., Brandt, E. V., Thevelein, J., Hohmann, S., and Prior, B. A. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144:671–680, 1998.
  • Jenkins, D. M., Powell, C. D., and Smart, K. A. Dried yeast: Impact of dehydration and rehydration on brewing yeast DNA integrity. J. Am. Soc. Brew. Chem. 68:132–138, 2010.
  • Jones, R. P., and Greenfield, P. F. Specific and non-specific inhibitory effects of ethanol on yeast growth. Enzyme Microbiol. Technol. 9:334–338, 1987.
  • Kamada, Y., Jung, U. S., Piotrowski, R., and Levin, D. E. The protein-kinase C-activated map kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat-shock response. Gene. Dev. 9:1559–1571, 1995.
  • Klipp, E., Nordlander, B., Kruger, R., Gennemark, P., and Hohmann, S. Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol. 23:975–982, 2005.
  • Kultz, D. DNA damage signals facilitate osmotic stress adaptation. Am. J. Physiol. 289:F504–F505, 2005.
  • Learmonth, R. P. Yeast membrane adaptation during fermentation. Proceedings of the 2nd International Seminar on Chemistry, Jatinangor, pp. 431–440, 2011.
  • Learmonth, R. P., and Carlin, S. M. Effects of growth phase and heat stress on membrane fluidity in Saccharomyce cerevisiae. Proceedings of the 9th International Symposium on Yeasts, p. 44, 1996.
  • Learmonth, R. P., and Carlin, S. M. Yeast membrane fluidity, potassium fluxes and extracellular pH in relation to glucose availability. FASEBJ. 11:A1101, 1997.
  • Learmonth, R. P., and Gratton, E. Assessment of membrane fluidity in individual yeast cells by laurdan generalised polarisation and multi-photon scanning fluorescence microscopy. In: Fluorescence Spectroscopy, Imaging and Probes. R. Kraayenhof, A. J. W. G. Visser, and H. Gerritsen, eds. Springer-Verlag, Berlin, Germany, pp. 241–252, 2002.
  • Legras, J. L., and Karst, F. Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol. Lett. 221:249–255, 2003.
  • Li, X. E., Wang, J. J., Phornsanthia, S., Yin, X. S., and Li, Q. Strengthening of cell wall structure enhances stress resistance and fermentation performance in lager yeast. J. Am. Soc. Brew. Chem. 72:88–94, 2014.
  • Lloyd, D., and Dinsdale, G. From bright field to fluorescent and confocal microscopy. In: Brewing Yeast Fermentation Performance. K. A. Smart, ed. Blackwell Science, Oxford, U.K., pp. 3–9, 2000.
  • Lodolo, E. J., Kock, J. L., Axcell, B. C., and Brooks, M. The yeast Saccharomyces cerevisiae—The main character in beer brewing. FEMS Yeast Res. 8:1018–1036, 2008.
  • Luyten, K., Albertyn, J., Skibbe, W. F., Prior, B. A., Ramos, J., Thevelein, J. M., and Hohmann, S. Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J. 14:1360–1371, 1995.
  • Mager, W. H., and Siderius, M. Novel insights into the osmotic stress response of yeast. FEMS Yeast Res. 2:251–257, 2002.
  • Majara, M., O'Connor-Cox, E. S. C., and Axcell, B. C. Trehalose—A stress protectant and stress indicator compound for yeast exposed to adverse conditions. J. Am. Soc. Brew. Chem. 54:221–227, 1996.
  • Majara, M., O'Connor-Cox, E. S. C., and Axcell, B. C. Trehalose—An osmoprotectant and stress indicator compound in high and very high gravity brewing. J. Am. Soc. Brew. Chem. 54:149–154, 1996.
  • McCaig, R. Evaluation of the fluorescent dye 1-anilino-8-naphthalene sulfonic acid for yeast viability determination. J. Am. Soc. Brew Chem. 48:22–25, 1990.
  • Meikle, A. J., Reed, R. H., and Gadd, G. M. Osmotic adjustment and the accumulation of organic solutes in whole cells and protoplasts of Saccharomyces cerevisiae. J. Gen. Microbiol. 134:3049–3060, 1988.
  • Miermont, A., Waharte, F., Hu, S. Q., McClean, M. N., Bottani, S., Leon, S., and Hersen, P. Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. Proc. Nat. Acad. Sci. U.S.A. 110:5725–5730, 2013.
  • Morris, G. J., Winters, L., Coulson, G. E., and Clarke, K. J. Effect of osmotic stress on the ultrastructure and viability of the yeast Saccharomyces cerevisiae. J. Gen. Microbiol. 132:2023–2034, 1986.
  • Nass, R., and Rao, R. The yeast endosomal Na+/H+ exchanger, Nhx1, confers osmotolerance following acute hypertonic shock. Microbiology 145:3221–3228, 1999.
  • Ness, F., Lavallee, F., Dubourdieu, D., Aigle, M., and Dulau, L. Identification of yeast strains using the polymerase chain reaction. J. Sci. Food Agric. 62:89–94, 1993.
  • Panaretou, B., and Piper, P. W. The plasma-membrane of yeast acquires a novel heat-shock protein (Hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat-shock and the entry to stationary phase. Eur. J. Biochem. 206:635–640, 1992.
  • Panchal, C. J., and Stewart, G. G. The effect of osmotic pressure on the production and excretion of ethanol and glycerol by a brewing yeast strain. J. Inst. Brew. 86:207–210, 1980.
  • Parasassi, T., and Gratton, E. Membrane lipid domains and dynamics as detected by laurdan fluorescence. J. Fluoresc. 5:59–69, 1995.
  • Parrou, J. L., and Francois, J. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal. Biochem. 248:186–188, 1997.
  • Piddocke, M. P., Kreisz, S., Heldt-Hansen, H. P., Nielsen, K. F., and Olsson, L. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Appl. Microbiol. Biotechnol. 84:453–464, 2009.
  • Pierce, J. S. Institute of Brewing Analysis Committee: Measurement of yeast viability. J. Inst. Brew. 76:442–443, 1970.
  • Powell, C. D., and Diacetis, A. N. Long term serial repitching and the genetic and phenotypic stability of brewer's yeast. J. Inst. Brew. 113:67–74, 2007.
  • Powell, C. D., and Nguyen, T. K. Genetic drift and variation in brewing yeast cultures. Proc. World Brew. Cong., Portland, OR, p. 12, 2012.
  • Powell, C. D., Quain, D. E., and Smart, K. A. The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res. 3:149–157, 2003.
  • Pratt, P. L., Bryce, J. H., and Stewart, G. G. The yeast vacuole—A scanning electron microscopy study during high gravity wort fermentations. J. Inst. Brew. 113:55–60, 2007.
  • Pratt, P. L., Bryce, J. H., and Stewart, G. G. The effects of osmotic pressure and ethanol on yeast viability and morphology. J. Inst. Brew. 109:218–228, 2003.
  • Puligundla, P., Smogrovicova, D., Obulam, V. S. R., and Ko, S. Very high gravity (VHG) ethanolic brewing and fermentation: A research update. J. Ind. Microbiol. Biotechnol. 38:1133–1144, 2011.
  • Quain, D. E., Box, W. G., and Walton, F. An inexpensive and simple small scale laboratory fermenter. Lab. Pract. 34:84–85, 1985.
  • Reed, R. H., Chudek, J. A., Foster, R., and Gadd, G. M. Osmotic significance of glycerol accumulation in exponentially growing yeasts. Appl. Environ. Microbiol. 53:2119–2123, 1987.
  • Rehmanji, M., Gopal, C., and Mola, A. Beer stabilization technology—Clearly a matter of choice. Tech. Q. Master Brew. Assoc. Am. 42:332–338, 2005.
  • Ribeiro, G. F., Corte-Real, M., and Johansson, B. Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol. Biol. Cell 17:4584–4591, 2006.
  • Rodriguez-Vargas, S., Sanchez-Garcia, A., Martinez-Rivas, J. M., Prieto, J. A., and Randez-Gil, F. Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl. Environ. Microbiol. 73:110–116, 2007.
  • Runner, V. M., and Brewster, J. L. A genetic screen for yeast genes induced by sustained osmotic stress. Yeast 20:913–920, 2003.
  • Sato, M., Watari, J., and Shinotsuka, K. Genetic instability in flocculation of bottom-fermenting yeast. J. Am. Soc. Brew. Chem. 59:130–134, 2001.
  • Shah, D. N., and Learmonth, R. P. Use of laurdan fluorescence to detect rapid membrane fluidity changes in Saccharomyces cerevisiae. Proceedings of Australian Society for Biochemistry and Molecular Biology 30, 1998.
  • Siddique, R., and Smart, K. A. Predicting fermentation performance using proton efflux. In: Brewing Yeast Fermentation Performance. K. A. Smart, ed. Blackwell Science, Oxford, U.K., pp. 46–54, 2000.
  • Siddique, R., and Smart, K. A. An improved acidification power test. In: Brewing Yeast Fermentation Performance. K. A. Smart, ed. Blackwell Science, Oxford, U.K., pp. 46–54, 2000.
  • Sigler, K., Matoulkova, D., Dienstbier, M., and Gabriel, P. Net effect of wort osmotic pressure on fermentation course, yeast vitality, beer flavor, and haze. Appl. Microbiol. Biotechnol. 82:1027–1035, 2009.
  • Sigler, K., Mikyska, A., Kosar, K., Gabriel, P., and Dienstbier, M. Factors affecting the outcome of the acidification power test of yeast quality: Critical reappraisal. Folia Microbiol. 51:525–534, 2006.
  • Simonin, H., Beney, L., and Gervais, P. Controlling the membrane fluidity of yeasts during coupled thermal and osmotic treatments. Biotechnol. Bioeng. 100:325–333, 2008.
  • Simonin, H., Beney, L., and Gervais, P. Sequence of occurring damages in yeast plasma membrane during dehydration and rehydration: Mechanisms of cell death. Biochim. Biophys. Acta 1768:1600–1610, 2007.
  • Smart, K. A. Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation. Yeast 24:993–1013, 2007.
  • Smart, K. A., and Whisker, S. Effect of serial repitching on the fermentation properties and condition of brewing yeast. J. Am. Soc. Brew. Chem. 54:41–44, 1996.
  • Stewart, G. G. Forty years of brewing research. J. Inst. Brew. 115:3–29, 2009.
  • Stewart, G. G. High-gravity brewing and distilling—Past experiences and future prospects. J. Am. Soc. Brew. Chem. 68:1–9, 2010.
  • Swan, T. M., and Watson, K. Stress tolerance in a yeast lipid mutant: Membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose. Can. J. Microbiol. 45:472–479, 1999.
  • Tamas, M. J., Luyten, K., Sutherland, F. C. W., Hernandez, A., Albertyn, J., Valadi, H., Li, H., Prior, B. A., Killan, S. G., Ramos, J., Gustafsson, L., Thevelein, J. M., and Hohmann, S. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol. Microbiol. 31:1087–1104, 1999.
  • Turk, M., Plemenitas, A., and Gunde-Cimerman, N. Extremophilic yeasts: Plasma-membrane fluidity as determinant of stress tolerance. Fungal Biol. 115:950–958, 2011.
  • Walker, G. M., De Nicola, R., Anthony, S., and Learmonth, R. Yeast-metal interactions: Impact on brewing and distilling fermentations. Proc. Conv. Inst. Brew, Asia Pacific Sect., 2006.
  • Werner-Washburne, M., Becker, J., Kosicsmithers, J., and Craig, E. A. Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J. Bacteriol. 171:2680–2688, 1989.
  • Werner-Washburne, M., Braun, E., Johnston, G. C., and Singer, R. A. Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 57:383–401, 1993.
  • Werner-Washburne, M., Braun, E. L., Crawford, M. E., and Peck, V. M. Stationary phase in Saccharomyces cerevisiae. Mol. Microbiol. 19:1159–1166, 1996.
  • Westfall, P. J., Ballon, D. R., and Thorner, J. When the stress of your environment makes you go HOG wild. Science 306:1511–1512, 2004.
  • Wojda, I., Alonso-Monge, R., Bebelman, J. P., Mager, W. H., and Siderius, M. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology 149:1193–1204, 2003.
  • Yu, Z. M., Zhao, H. F., Wan, C. Y., Sun, G. F., and Zhao, M. M. The dynamic changes of proton efflux rate in Saccharomyces pastorianus strains during high gravity or very high gravity brewing. J. Inst. Brew. 117:176–181, 2011.
  • Yu, Z. M., Zhao, M. M., Li, H. P., Zhao, H. F., Zhang, Q. L., Wan, C. Y., and Li, H. P. A comparative study on physiological activities of lager and ale brewing yeasts under different gravity conditions. Biotechnol. Bioprocess Eng. 17:818–826, 2012.
  • Zi, Z. K., Liebermeister, W., and Klipp, E. A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae. PLoS ONE 5:e9522, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.