15
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Tryptic Digests of Sorghum Malt Sprouts: Evaluation of Their Stimulatory Roles during Very-High-Gravity Ethanol Fermentation

Digeridos Trípticos de Brotes de Malta de Sorgo: Evaluación de Sus Papeles Estimulantes Durante Fermentación de Etanol de Muy Alta Gravedad

, &
Pages 121-128 | Received 02 Jun 2004, Accepted 09 Dec 2004, Published online: 01 Feb 2018

Literature Cited

  • Albers, E., Larsson, C., Lidén, G., Niklasson, C., and Gustafson, L. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl. Env. Microbiol. 62:3187–3195, 1996.
  • Aon, J. C., and Cortasa, S. Involvement of nitrogen metabolism in the triggering of ethanol fermentation in aerobic chemostat cultures of Saccharomyces cerevisiae. Metab. Eng. 3:250–264, 2001.
  • Axcell, B., Kruger, L., and Allen, G. Some investigative studies with yeast foods. Proc. Conv Inst. Brew, Aust. N.Z. Sect. 20:210–109, 1988.
  • Bayrock, D. P., and Ingledew, W. M. Application of multistage continuous fermentation for production of fuel ethanol by very-high-gravity fermentation technology. J. Ind. Microbiol. Biotechnol. 27:87–93, 2001.
  • Birch, R. M., and Walker, G. M. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme Microb. Technol. 26:678–687, 2000.
  • Carlucci, G., Mazzeo, P., Del Govarnatore, S., Di Giacomo, G., and Del Re, G. Liquid chromatographic method for the analysis of tocopherols in malt sprouts with supercritical fluid extraction. J. Chromatogr. A 935:87–91, 2001.
  • Casey, G. P., and Ingledew, W. M. Reevaluation of alcohol synthesis in brewer's yeast. Tech. Q. Master Brew. Assoc. Am. 22:133–141, 1985.
  • Casey, G. P., and Ingledew, W. M. Ethanol tolerance in yeasts. Crit. Rev. Microbiol. 13:219–290, 1986.
  • Casey, G. P., Magnus, C. A., and Ingledew, W. M. High gravity brewing: Nutrient enhanced production of high concentrations of ethanol by brewing yeasts. Biotechnol. Lett. 5:429–434, 1983.
  • Casey, G. P., Magnus, C. A., and Ingledew, W. M. High gravity brewing: Effects of nutrition on yeast composition, fermentative ability, and alcohol production. Appl. Environ. Microbiol. 48:639–646, 1984.
  • Chung, K.-T., Wong, T. Y., Wei, C-I. Y., Huang, Y-W. Y., and Lin, Y. Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 38:421–464, 1998.
  • Cohen, S. S. In: Practical Statistics. Edward Arnold, London. Pp. 131–133, 1988.
  • D'Amore, T., Panchal, C. J., and Stewart, G. G. Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation. Appl. Environ. Microbiol. 54:110–114, 1988.
  • Da Cruz, S. H., Batistote, M., and Ernandes, J. R. Effect of sugar catabolite repression in correlation with the structural complexity of nitrogen source on yeast growth and fermentation. J. Inst. Brew 109:349–355, 2003.
  • Da Cruz, S. H., Cilli, E. M., and Ernandes, J. R. Structural complexity of the nitrogen source and influence on yeast growth and fermentation. J. Inst. Brew 108:54–61, 2002.
  • Deeni, Y. Y., and Sadiq, N. M. Antimicrobial properties and phytochemical constituents of the leaves of African mistletoe (Tapinanthus dodoneifolius (DC) (Danser) (Loranthaceae): An ethnomedicinal plant of Hausaland, Northern Nigeria. J. Ethnopharmacol. 83:235–240, 2002.
  • Dombek, K. M., and Ingram, L. O. Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Appl. Environ. Microbiol. 52:975–981, 1986.
  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350–356, 1956.
  • Ebi, G. C., Ifeanacho, C. J., and Kamalu, T. N. Antimicrobial properties of Uvaria chamae stem bark. Fitoterpia 70:621–624, 1999.
  • Echegaray, O. F., Carvalho, J. C. M., Fernandez, A. N. R., Sato, S., Aquarone, E., and Vittolo, M. Fed-batch culture of Saccharomyces cerevisiae in sugar cane blackstrap molasses: Invertase activity of intact cells in ethanol fermentation. Biomass Energy 19:39–50, 2000.
  • El-Zalaki, E. M., and Hamza, N. A. Propagation of Lentinus edodes on a modified malt sprouts medium for amylase production. Food Chem. 5:131–138, 1980.
  • Ezeogu, L. I., and Ogbonna, J. C. Tryptic digests of sorghum malt sprouts: An assessment of their usefulness as organic nitrogen sources for the yeast Saccharomyces cerevisiae. J. Am. Soc. Brew. Chem. 63:50–56, 2005.
  • Ezeogu, L. I., and Okolo, B. N. Effects of molasses concentration and medium supplementation on the adaptability and viability of a high-level ethanol-tolerant palm wine Saccharomyces isolate. Biotechnol. Lett. 16:95–100, 1994.
  • Ezeogu, L. I., and Okolo, B. N. Sedimentation characteristics and effects of molasses concentration and medium supplementation on the ethanol productivity of ethanol-tolerant palm wine Saccharomyces. Biotechnol. Lett. 16:101–106, 1994.
  • Ezeogu, L. I., Okolo, B. N., and Ogbonna, J. C. Assessment of sorghum malt sprouts acid hydrolysates as organic nitrogenous base for the cultivation of Saccharomyces cerevisiae. J. Inst. Brew. 107:337–343, 2001.
  • Hayashida, S., Feng, D. D., and Hungo, M. Functions of the high concentration ethanol-producing factor. Agric. Biol. Chem. 38:2001–2006, 1974.
  • Hujanen, M., and Linko, Y. Y. Effect of temperature and various nitrogen sources on L-(+)-lactic acid production by Lactobacillus casei. Appl. Microbiol. Biotechnol. 45: 307–313, 1996.
  • Iliev, I., Tchorbanov, B., and Todorova, V. Enzymic protein hydrolysates from malt sprouts. J. Inst. Brew. 98:139–142. 1992.
  • Ingledew, W. M., Sosulski, F. W., and Magnus, C. A. An assessment of yeast foods and their utility in brewing and enology. J. Am. Soc. Brew. Chem. 44:166–170, 1986.
  • Jones, A., and Ingledew, W. M. Fuel ethanol production: Appraisal of nitrogenous yeast foods for very high gravity wheat mash fermentation. Process Biochem. 29(6):489–488, 1994.
  • Jones, R. P., and Greenfield, P. F. Ethanol and the fluidity of the plasma membrane. Yeast 3:323–332, 1984.
  • Kadam, K. L., and Newman, M. M. Development of low-cost fermentation medium for ethanol production from biomass. Appl. Environ. Microbiol. 47:625–629, 1997.
  • Kruger, L., Pickerell, A. T. W., and Axcell, B. C. The effects of protein-based yeast foods on the absorption of amino acids and production of flavour-active compounds by yeast. Proc. Conv. Inst. Brew. Central South African Sect. 3:136–143, 1994.
  • Nagodawithana, T. W., and Steinkraus, K. H. Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in rapid fermentation. Appl. Environ. Microbiol. 31:158–162, 1976.
  • O'Connor-Cox, E. S. C., and Ingledew, W. M. Effects of timing of oxygenation on very high gravity brewing fermentation. J. Am. Soc. Brew. Chem. 48:26–32, 1990.
  • O'Connor-Cox, E. S. C., Munoz, E., and Ingledew, W. M. Wort nitrogenous sources–their use by brewing yeasts: A review. J. Am. Soc. Brew. Chem. 47:102–108, 1989.
  • O'Connor-Cox, E. S. C., Munoz, E., and Ingledew, W. M. Improved ethanol yields through supplementation with excess assimilable nitrogen. J. Ind. Microbiol. 8:45–52, 1991.
  • Oura, E. Reaction products of yeast fermentations. Process Biochem. 12(1):19–21, 1977.
  • Palmqvist, E., Galbe, M., and Hahn-Hagerdahl, B. Evaluation of cell recycling in continuous fermentation of enzymatic hydrolysates of spruce with Saccharomyces cerevisiae and on-line monitoring of glucose and ethanol. Appl. Microbiol. Biotechnol. 50:545–551, 1998.
  • Panchal, C. J., and Stewart, G. G. The influence of medium conditions on the utilization of monosaccharides by a strain of Saccharomyces uvarum (carlsbergensis). J. Inst. Brew 88:86–88, 1982.
  • Patil, B. G., Gokhale, D. V., Bastawde, K. B., Puntambekar, U. S., and Patil, S. G. The use of tamarind waste to improve ethanol production from cane molasses. J. Ind. Microbiol. Biotechnol. 21:307–310, 1998.
  • Patil, S. G., Gokhale, D. V., and Patil, B. G. Novel supplements enhance the ethanol production in cane molasses. Biotechnol. Lett. 11:213–216, 1989.
  • Patil, S. G., and Patil, B. G. Chitin supplement speeds up the ethanol production in cane molasses fermentation. Enzyme Microb. Technol. 11:38–43, 1989.
  • Patil, S. G., and Patil, B. G. Top and bottom yeast together accelerate ethanol production in molasses fermentation. Biotechnol. Lett. 11:359–364, 1989.
  • Patterson, C. A., and Ingledew, W. M. Utilization of peptides by a lager beer brewing yeast. J. Am. Soc. Brew. Chem. 57:1–8, 1999.
  • Petra, B., Smogrovicova, D., Slavikova, I., Patkova, J., and Domeni, Z. Improvement of very high gravity ethanol fermentation by media supplementation using Saccharomyces cerevisiae. Biotechnol. Lett. 21:337–341, 1999.
  • Ramalingam, A., and Finn, R. K. The vacuferm process: A new approach to fermentation alcohol. Biotechnol. Bioeng. 19:583–589, 1977.
  • Radler, F., and Schürtz, H. Glycerol production of various strains of Saccharomyces. Am. J. Enol. Vitic. 33:36–40, 1982.
  • Rees, E. M. R., and Stewart, G. G. The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high gravity worts. J. Inst. Brew. 103:287–291, 1997.
  • Rees, E. M. R., and Stewart, G. G. Strain specific response of brewers' yeast strains to zinc concentrations in conventional and high gravity wort. J. Inst. Brew. 104:221–228, 1998.
  • Remize, F., Sablayrolles, J. M., and Dequin, S. Re-assessment of the influence of yeast strain and environmental factors on glycerol production in wine. J. Appl. Microbiol. 88:371–378, 2000.
  • Somogyi, M. Determination of reducing sugars. J. Biol. Chem. 195:19–20, 1952.
  • Suresh, K., Kiransree, N., and Rao, L. V. Production of ethanol by raw starch hydrolysis and fermentation of damaged grains of wheat and sorghum. Bioprocess Eng. 21:165–168, 1999.
  • Swain, S. M., and Armentano, L. E. Quantitative evaluation of fiber from nonforage sources used to replace alfalfa silage. J. Dairy Sci. 77:2318–2331, 1994.
  • Thomas, K. C., Hynes, S. H., and Ingledew, W. M. Effects of particulate materials and osmoprotectants on very high gravity ethanolic fermentation by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 60:1519–1524, 1994.
  • Thomas, K. C., Hynes, S. H., and Ingledew, W. M. Practical and theoretical considerations in the production of high concentration of alcohol by fermentation. Process Biochem. 31(2):321–333, 1996.
  • Thomas, K. C., Hynes, S. H., and Ingledew, W. M. Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic acid and lactic acids. Appl. Environ. Microbiol. 68:1616–1623, 2002.
  • Thomas, K. C., and Ingledew, W. M. Fuel alcohol production: Effects of free amino acid nitrogen on fermentation of very high gravity mashes. Appl. Environ. Microbiol. 56:2046–2052, 1990.
  • Van Hoek, P., van Dijken, J. P., and Pronk, J. T. Effect of specific growth rate on fermentative capacity of baker's yeast. Appl. Environ. Microbiol. 64:4226–4233, 1998.
  • Van Milgen, J., Murphy, M. R., and Berger, L. L. A compartmental model to analyze ruminal digestion. J. Dairy Sci. 74:2515–2529, 1991.
  • Vazquez-Anon, M., Bertics, S. J., and Grummer, R. R. The effects of dietary energy source during mid to late lactation on liver triglyceride and lactation of dairy cows. J. Dairy Sci. 80:2504–2512, 1997.
  • Verduyn, P. E., Scheffer, W. A., and Van Dijken, T. P. Physiology of Saccharomyces cerevisiae in anaerobic glucose limited chemostat. J. Gen. Microbiol. 136:395–40, 1990.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.