36
Views
30
CrossRef citations to date
0
Altmetric
Review

A new perspective on the pathobiology of keratoconus: interplay of stromal wound healing and reactive species‐associated processes

, MSc PGDipSc, , PhD FRCS FRCOphth & , PhD BSc(Hons)
Pages 188-196 | Received 31 Jul 2012, Accepted 30 Oct 2012, Published online: 15 Apr 2021

References

  • Rabinowitz MDYS. Keratoconus. Surv Ophthalmol 1998; 42: 297–319.
  • Al‐yousuf N, Mavrikakis I, Mavrikakis E, Daya SM. Penetrating keratoplasty: indications over a 10 year period. Br J Ophthalmol 2004; 88: 998–1001.
  • Cunningham WJ, Brookes NH, Twohill HC, Moffatt SL, Pendergrast DGC, Stewart JM, Mcghee CNJ. Trends in the distribution of donor corneal tissue and indications for corneal transplantation: the New Zealand National Eye Bank Study 2000–2009. Clin Experiment Ophthalmol 2012; 40: 141–147.
  • Goldich Y, Marcovich AL, Barkana Y, Mandel Y, Hirsh A, Morad Y, Avni I et al. Clinical and corneal biomechanical changes after collagen cross‐linking with riboflavin and UV irradiation in patients with progressive keratoconus: results after 2 years of follow‐up. Cornea 2012; 31: 609–614.
  • Colin J, Velou S. Current surgical options for keratoconus. J Cataract Refract Surg 2003; 9: 379–386.
  • Ambekar R, Toussaint KC Jr, Wagoner Johnson A. The effect of keratoconus on the structural, mechanical, and optical properties of the cornea. J Mech Behav Biomed Mater 2011; 4: 223–236.
  • Kenney MC, Brown DJ. The cascade hypothesis of keratoconus. Cont Lens Anterior Eye 2003; 26: 139–146.
  • Fini ME. Keratocyte and fibroblast phenotypes in the repairing cornea. Prog Retin Eye Res 1999; 18: 529–551.
  • Wilson SE, Mohan RR, Mohan RR, Ambrósio R Jr, Hong J, Lee J. The corneal wound healing response: cytokine‐mediated interaction of the epithelium, stroma and inflammatory cells. Prog Retin Eye Res 2001; 20: 625–637.
  • Wilson SE, Liu JJ, Mohan RR. Stromal‐epithelial interactions in the cornea. Prog Retin Eye Res 1999; 18: 293–309.
  • Yanai R, Yamada N, Kugimiya N, Inui M, Nishida T. Mitogenic and anti‐apoptotic effects of various growth factors on human corneal fibroblasts. Invest Ophthalmol Vis Sci 2002; 43: 2122–2126.
  • Kim WJ, Rabinowitz YS, Meisler DM, Wilson SE. Keratocyte apoptosis associated with keratoconus. Exp Eye Res 1999; 69: 475–481.
  • Kaldawy RM, Wagner J, Ching SMD, Seigel GM. Evidence of apoptotic cell death in keratoconus. Cornea 2002; 21: 206–209.
  • Mohan RR, Kim WJ, Chen L, Wilson SE. Bone morphogenic proteins 2 and 4 and their receptors in the adult human cornea. Invest Ophthalmol Vis Sci 1998; 39: 2626–2636.
  • Lee JE, Oum BS, Choi HY, Lee SU, Lee JS. Evaluation of differentially expressed genes identified in keratoconus. Mol Vis 2009; 15: 2480–2487.
  • Kim WJ, Mohan RR, Wilson SE. Effect of PDGF, IL‐1alpha, and BMP2/4 on corneal fibroblast chemotaxis: expression of the platelet‐derived growth factor system in the cornea. Invest Ophthalmol Vis Sci 1999; 40: 1364–1372.
  • Rabinowitz YS, Dong L, Wistow G. Gene expression profile studies of human keratoconus cornea for NEIBank: a novel cornea‐expressed gene and the absence of transcripts for aquaporin 5. Invest Ophthalmol Vis Sci 2005; 46: 1239–1246.
  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35: 495–516.
  • Mcgough A, Pope B, Chiu W, Weeds A. Cofilin changes the twist of f‐actin: implications for actin filament dynamics and cellular function. J Cell Biol 1997; 138: 771–781.
  • Dos remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 2003; 83: 433–473.
  • Chua BT, Volbracht C, Tan KO, Li R, Yu VC, Li P. Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat Cell Biol 2003; 5: 1083–1089.
  • Ihrie RA, Attardi LD. Perpetrating p53‐dependent apoptosis. Cell Cycle 2004; 3: 267–269.
  • Wilson HL, Wilson SA, Surprenant A, North RA. Epithelial membrane proteins induce membrane blebbing and interact with the P2X7 receptor C terminus. J Biol Chem 2002; 277: 34017–34023.
  • Milner CM, Day AJ. TSG‐6: a multifunctional protein associated with inflammation. J Cell Sci 2003; 116: 1863–1873.
  • Oh JY, Roddy GW, Choi H, Lee RH, Ylöstalo JH, Rosa RH, Prockopa DJ. Anti‐inflammatory protein TSG‐6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proc Natl Acad Sci USA 2010; 107: 16875–16880.
  • Ha NT, Nakayasu K, Murakami A, Ishidoh K, Kanai A. Microarray analysis identified differentially expressed genes in keratocytes from keratoconus patients. Curr Eye Res 2004; 28: 373–379.
  • Fabre EJ, Bureau J, Pouliquen Y, Lorans G. Binding sites for human interleukin 1 alpha, gamma interferon and tumor necrosis factor on cultured fibroblasts of normal cornea and keratoconus. Curr Eye Res 1991; 10: 585–592.
  • Wilson SE, He YG, Weng J, Li Q, Mcdowall AW, Vital M, Chwang EL. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin‐1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res 1996; 62: 325–338.
  • Mohan RR, Liang Q, Kim WJ, Helena MC, Baerveldt F, Wilson SE. Apoptosis in the cornea: further characterization of Fas/Fas ligand system. Exp Eye Res 1997; 65: 575–589.
  • Kim SH, Mok JW, Kim HS, Joo CK. Association of −31T>C and −511 C>T polymorphisms in the interleukin 1 beta (IL1B) promoter in Korean keratoconus patients. Mol Vis 2008; 14: 2109–2116.
  • Li X, Rabinowitz YS, Tang YG, Picornell Y, Taylor KD, Hu M, Yang H. Two‐stage genome‐wide linkage scan in keratoconus sib pair families. Invest Ophthalmol Vis Sci 2006; 47: 3791–3795.
  • Sherwin T, Green CR. Stromal wound healing. In: Brightbill FS, Mcdonnell PJ, Mcghee CNJ, Farjo AA, Serdarevic ON, eds. Corneal Surgery: Theory, Technique and Tissue, 4th ed. Missouri: Mosby Elsevier, 2009. p 45–56.
  • Lema I, Durán JA. Inflammatory molecules in the tears of patients with keratoconus. Ophthalmology 2005; 112: 654–659.
  • Duran JA, Lema I. Inflammatory markers in keratoconus. Invest Ophthalmol Vis Sci 2003; 44: E‐Abstract 1314.
  • Jun AS, Cope L, Speck C, Feng X, Lee S, Meng H, Hamad A et al. Subnormal cytokine profile in the tear fluid of keratoconus patients. PLoS ONE 2011; 6: e16437.
  • Hong JW, Liu JJ, Lee JS, Mohan RR, Mohan RR, Woods DJ, He YG et al. Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea. Invest Ophthalmol Vis Sci 2001; 42: 2795–2803.
  • Maertzdorf J, Osterhaus ADME, Verjans GMGM. IL‐17 expression in human herpetic stromal keratitis: modulatory effects on chemokine production by corneal fibroblasts. J Immunol 2002; 169: 5897–5903.
  • Nakamura M, Nishida T. Differential effects of epidermal growth factor and interleukin 6 on corneal epithelial cells and vascular endothelial cells. Cornea 1999; 18: 452–458.
  • Ebihara N, Matsuda A, Nakamura S, Matsuda H, Murakami A. Role of the IL‐6 classic‐ and trans‐signaling pathways in corneal sterile inflammation and wound healing. Invest Ophthalmol Vis Sci 2011; 52: 8549–8557.
  • Murdaca G, Colombo BM, Puppo F. The role of Th17 lymphocytes in the autoimmune and chronic inflammatory diseases. Intern Emerg Med 2011; 6: 487–495.
  • Yamamoto K, Rose‐john S. Therapeutic blockade of interleukin‐6 in chronic inflammatory disease. Clin Pharmacol Ther 2012: 91: 574–576.
  • Gabr MA, Jing L, Helbling AR, Sinclair SM, Allen KD, Shamji MF, Richardson WJ et al. Interleukin‐17 synergizes with IFNγ or TNFα to promote inflammatory mediator release and intercellular adhesion molecule‐1 (ICAM‐1) expression in human intervertebral disc cells. J Orthop Res 2010; 29: 1–7.
  • Gagen D, Laubinger S, Li Z, Petrescu MS, Brown ES, Smith CW, Burns AR. ICAM‐1 mediates surface contact between neutrophils and keratocytes following corneal epithelial abrasion in the mouse. Exp Eye Res 2010; 91: 676–684.
  • Fournié P, Gordon GM, Ledee DR, Roberts CJ, Fini ME. Shape, structure and biomechanical properties. In: Brightbill FS, Mcdonnell PJ, Mcghee CNJ, Farjo AA, Serdarevic ON, eds. Corneal Surgery: Theory, Technique and Tissue, 4th ed. Missouri: Mosby Elsevier, 2009. p 33–44.
  • Knupp C, Pinali C, Lewis PN, Parfitt GJ, Young RD, Meek KM, Quantock AJ. The architecture of the cornea and structural basis of its transparency. Adv Protein Chem Struct Biol 2009. 78: 25–49.
  • Zieske JD. Extracellular matrix and wound healing. Curr Opin Ophthalmol 2001; 12: 237–241.
  • Garana RM, Petroll WM, Chen WT, Herman IM, Barry P, Andrews P, Cavanagh HD et al. Radial keratotomy. II: role of the myofibroblast in corneal wound contraction. Invest Ophthalmol Vis Sci 1992; 33: 3271–3282.
  • Jester JV, Petroll WM, Barry PA, Cavanagh HD. Expression of alpha‐smooth muscle (alpha‐SM) actin during corneal stromal wound healing. Invest Ophthalmol Vis Sci 1995; 36: 809–819.
  • Fini ME. Keratocyte and fibroblast phenotypes in the repairing cornea. Prog Retin Eye Res 1999; 18: 529–551.
  • Welch MP, Odland GF, Clark RA. Temporal relationships of F‐actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J Cell Biol 1990; 110: 133–145.
  • Fini ME, Stramer BM. How the cornea heals: cornea‐specific repair mechanisms affecting surgical outcomes. Cornea 2005; 24: S2‐S11.
  • Desmoulibre A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor‐beta 1 induces alpha‐smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993; 122: 103–111.
  • Wolffsohn JS, Safeen S, Shah S, Laiquzzaman M. Changes of corneal biomechanics with keratoconus. Cornea 2012; 8: 849–854.
  • Saeed A, Anthony JB, Sachin MS, Nicolas RH, Stephen JT, Keith MM. Ultrastructural analysis of collagen fibrils and proteoglycans in keratoconus. Acta Ophthalmol 2008; 86: 764–772.
  • Meek KM, Tuft SJ, Huang Y, Gill PS, Hayes S, Newton RH, Bron AJ. Changes in collagen orientation and distribution in keratoconus corneas. Invest Ophthalmol Vis Sci 2005; 46: 1948–1956.
  • Morishige N, Wahlert AJ, Kenney MC, Brown DJ, Kawamoto K, Chikama TI, Nishida T et al. Second‐harmonic imaging microscopy of normal human and keratoconus cornea. Invest Ophthalmol Vis Sci 2007; 48: 1087–1094.
  • Cheng LE, Maruyama I, Sundarraj N, Sugar J, Feder RS, Yue BY. Expression of type XII collagen and hemidesmosome‐associated proteins in keratoconus corneas. Curr Eye Res 2001; 22: 333–340.
  • Nishiyama T, Mcdonough AM, Bruns RR, Burgeson RE. Type XII and XIV collagens mediate interactions between banded collagen fibers in vitro and may modulate extracellular matrix deformability. J Biol Chem 1994; 269: 28193–28199.
  • Font B, Eichenberger D, Rosenberg LM, Van Der Rest M. Characterization of the interactions of type XII collagen with two small proteoglycans from fetal bovine tendon, decorin and fibromodulin. Matrix Biol 1996; 15: 341–348.
  • Maatta MP, Heljasvaara RP, Sormunen RP, Pihlajaniemi TP, Autio‐harmainen HP, Tervo TP. Differential expression of collagen types XVIII/endostatin and XV in normal, keratoconus and scarred human corneas. Cornea 2006; 25: 341–349.
  • Maatta MP, Vaisanen TM, Vaisanen M‐RM, Pihlajaniemi TP, Tervo TP. Altered expression of type XIII collagen in keratoconus and scarred human cornea: increased expression in scarred cornea is associated with myofibroblast transformation. Cornea 2006; 25: 448–453.
  • Hägg P, Väisänen T, Tuomisto A, Rehn M, Tu H, Huhtala P, Eskelinenb S et al. Type XIII collagen: a novel cell adhesion component present in a range of cell matrix adhesions and in the intercalated discs between cardiac muscle cells. Matrix Biol 2001; 19: 727–742.
  • Yue BYJT, Sugar J, Benveniste K. Heterogeneity in keratoconus: possible biochemical basis. Proc Soc Exp Biol Med 1984; 175: 336–341.
  • Kenney MC, Chwa M, Escobar M, Brown D. Altered gelatinolytic activity by keratoconus corneal cells. Biochem Biophys Res Commun 1989; 161: 353–357.
  • Kao WWY, Vergnes JP, Ebert J, Sundar‐raj CV, Brown SI. Increased collagenase and gelatinase activities in keratoconus. Biochem Biophys Res Commun 1982; 107: 929–936.
  • Sawaguchi S, Yue BY, Chang I, Sugar J, Robin J. Proteoglycan molecules in keratoconus corneas. Invest Ophthalmol Vis Sci 1991; 32: 1846–1853.
  • Rada JA, Cornuet PK, Hassell JR. Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin) core proteins. Exp Eye Res 1993; 56: 635–648.
  • Winnemoller M, Schmidt G, Kresse H. Influence of decorin on fibroblast adhesion to fibronectin. Eur J Cell Biol 1991; 54: 10–17.
  • Takeuchi Y, Kodama Y, Matsumoto T. Bone matrix decorin binds transforming growth factor‐beta and enhances its bioactivity. J Biol Chem 1994; 269: 32634–32638.
  • Wentz‐hunter K, Cheng LE, Ueda J, Sugar J, Yue BY. Keratocan expression is increased in the stroma of keratoconus corneas. Mol Med 2001; 7: 470–477.
  • Chakravarti S. Focus on molecules: keratocan (KERA). Exp Eye Res 2006; 82: 183–184.
  • Zhou L, Yue BY, Twining SS, Sugar J, Feder RS. Expression of wound healing and stress‐related proteins in keratoconus corneas. Curr Eye Res 1996; 15:1124–1131.
  • Tuori A, Virtanen I, Aine E, Uusitalo H. The expression of tenascin and fibronectin in keratoconus, scarred and normal human cornea. Graefes Arch Clin Exp Ophthalmol 1997; 235: 222–229
  • Pearson CA, Pearson D, Shibahara S, Hofsteenge J, Chiquet‐ehrismann R. Tenascin: cDNA cloning and induction by TGF‐beta. EMBO J 1988; 7: 2977–2982.
  • Prieto AL, Edelman GM, Crossin KL. Multiple integrins mediate cell attachment to cytotactin/tenascin. Proc Natl Acad Sci USA 1993; 90: 10154–10158.
  • Efron N, Hollingsworth JG. New perspectives on keratoconus as revealed by corneal confocal microscopy. Clin Exp Optom 2008; 91: 34–55.
  • Nelidova D, Sherwin T. Keratoconus layer by layer. In: Rumelt S ed. Pathology and Matrix Metalloproteinases [monograph on the Internet]. InTech. Available from: http://www.intechopen.com/books/advances‐in‐ophthalmology/the‐matrix‐metalloproteinase‐hypothesis‐of‐keratoconus‐layer‐by‐layer. [Accessed July 2012].
  • Shoham A, Hadziahmetovic M, Dunaief JL, Mydlarski MB, Schipper HM. Oxidative stress in diseases of the human cornea. Free Radic Biol Med 2008; 45: 1047–1055.
  • Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 2008; 4: 278–286.
  • Rose RC, Richer SP, Bode AM. Ocular oxidants and antioxidant protection. Proc Soc Exp Biol Med 1998; 217: 397–407.
  • Tu BP, Weissman JS. Oxidative protein folding in eukaryotes. J Cell Biol 2004; 164: 341–346.
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552: 335–344.
  • Cejková J, Stípek S, Crkovská J, Ardan T, Pláteník J, Cejka C, Midelfart A. UV Rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiol Res 2004; 53: 1–10.
  • Behndig A, Karlsson K, Johansson BO, Brannstrom T, Marklund SL. Superoxide dismutase isoenzymes in the normal and diseased human cornea. Invest Ophthalmol Vis Sci 2001; 42: 2293–2296.
  • Atalla L, Fernandez MA, Rao NA. Immunohistochemical localization of catalase in ocular tissue. Curr Eye Res 1987; 6: 1181–1187.
  • Bray RC, Cockle SA, Fielden EM, Roberts PB, Rotilio G, Calabrese L. Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem J 1974; 139: 43–48.
  • Lassen N, Black WJ, Estey T, Vasiliou V. The role of corneal crystallins in the cellular defense mechanisms against oxidative stress. Semin Cell Dev Biol 2008; 19: 100–112.
  • Ganea E, Harding JJ. Glutathione‐related enzymes and the eye. Curr Eye Res 2006; 31: 1–11.
  • Estey T, Piatigorsky J, Lassen N, Vasiliou V. ALDH3A1: a corneal crystallin with diverse functions. Exp Eye Res 2007; 84: 3–12.
  • Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF. Mechanisms of protection of catalase by NADPH. J Biol Chem 1999; 274: 13908–13914.
  • Ryter SW, Tyrrell RM. The heme synthesis and degradation pathways: role in oxidant sensitivity: heme oxygenase has both pro‐ and antioxidant properties. Free Radic Biol Med 2000; 28: 289–309.
  • Stocker R. Antioxidant activities of bile pigments. Antioxid Redox Signal 2004; 6: 841–849.
  • Piantadosi CA. Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic Biol Med 2008; 45: 562–569.
  • Liebler DC. The role of metabolism in the antioxidant function of vitamin E. Crit Rev Toxicol 1993; 23: 147–169.
  • Serbecic N, Beutelspacher SC. Anti‐oxidative vitamins prevent lipid‐peroxidation and apoptosis in corneal endothelial cells. Cell Tissue Res 2005; 320: 465–475.
  • Gutteridge JMC. Hydroxyl radicals, iron, oxidative stress and neurodegeneration. Ann N Y Acad Sci 1994; 738: 201–213.
  • Curry S, Brick P, Franks NP. Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim Biophys Acta 1999; 1441: 131–140.
  • Piatigorsky J. Gene sharing in lens and cornea: facts and implications. Prog Retin Eye Res 1998; 17: 145–174.
  • Kasetsuwan N, Wu FM, Hsieh F, Sanchez D, Mcdonnell PJ. Effect of topical ascorbic acid on free radical tissue damage and inflammatory cell influx in the cornea after excimer laser corneal surgery. Arch Ophthalmol 1999; 117: 649–652.
  • Marks‐hull H, Shiao TY, Araki‐sasaki K, Traver R, Vasiliou V. Expression of ALDH3 and NMO1 in human corneal epithelial and breast adenocarcinoma cells. Adv Exp Med Biol 1997; 414: 59–68.
  • Bilgihan K, Bilgihan A, Adiguzel U, Sezer C, Yis O, Akyol G, Hasanreisoglu B. Keratocyte apoptosis and corneal antioxidant enzyme activities after refractive corneal surgery. Eye 2002; 16: 63–68.
  • Pappa A, Chen C, Koutalos Y, Townsend AJ, Vasiliou V. Aldh3a1 protects human corneal epithelial cells from ultraviolet‐ and 4‐hydroxy‐2‐nonenal‐induced oxidative damage. Free Radic Biol Med 2003; 34: 1178–1189.
  • Cantore M, Siano S, Coronnello M, Mazzetti L, Franchi‐micheli S, Boldrini E, Ciuffia M et al. Pirenoxine prevents oxidative effects of argon fluoride excimer laser irradiation in rabbit corneas: biochemical, histological and cytofluorimetric evaluations. J Photochem Photobiol B 2005; 78: 35–42.
  • Shimmura S, Tadano K, Tsubota K. UV dose‐dependent caspase activation in a corneal epithelial cell line. Curr Eye Res 2004; 28: 85–92.
  • Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1998; 1366: 53–67.
  • Atilano SR, Chwa M, Kim DW, Jordan N, Udar N, Coskun P, Jester, JV et al. Hydrogen peroxide causes mitochondrial DNA damage in corneal epithelial cells. Cornea 2009; 28: 426–433.
  • Kasetsuwan N, Wu FM, Hsieh F, Sanchez D, Mcdonnell PJ. Effect of topical ascorbic acid on free radical tissue damage and inflammatory cell influx in the cornea after excimer laser corneal surgery. Arch Ophthalmol 1999; 117: 649–652.
  • Jain S, Hahn TW, Mccally RL, Azar DT. Antioxidants reduce corneal light scattering after excimer keratectomy in rabbits. Lasers Surg Med 1995; 17: 160–165.
  • Monboisse JC, Borel JP. Oxidative damage to collagen. EXS 1992; 62: 323–327.
  • Chace KV, Carubelli R, Nordquist RE, Rowsey JJ. Effect of oxygen free radicals on corneal collagen. Free Radic Res Commun 1991; 12–13: 591–594.
  • Ohshima M, Jung SK, Yasuda T, Sakano Y, Fujimoto D. Active oxygen‐induced modification alters properties of collagen as a substratum for fibroblasts. Matrix 1993; 13: 187–194.
  • Downes JE, Swann PG, Holmes RS. Ultraviolet light‐induced pathology in the eye: associated changes in ocular aldehyde dehydrogenase and alcohol dehydrogenase activities. Cornea 1993; 12: 241–248.
  • Yanagiya N, Akiba J, Kado M, Hikichi T, Yoshida A. Effects of peroxynitrite on rabbit cornea. Graefes Arch Clin Exp Ophthalmol 2000; 238: 584–588.
  • Podskochy A, Fagerholm P. Repeated UVR exposures cause keratocyte resistance to apoptosis and hyaluronan accumulation in the rabbit cornea. Acta Ophthalmol Scand 2001; 79: 603–608.
  • Kuo IC. Corneal wound healing. Curr Opin Ophthalmol 2004; 15: 311–315.
  • Chwa M, Atilano SR, Hertzog D, Zheng H, Langberg J, Kim DW, Kenney MC. Hypersensitive response to oxidative stress in keratoconus corneal fibroblasts. Invest Ophthalmol Vis Sci 2008; 49: 4361–4369.
  • Joyce NC, Zhu CC, Harris DL. Relationship among oxidative stress, DNA damage and proliferative capacity in human corneal endothelium. Invest Ophthalmol Vis Sci 2009; 50: 2116–2122.
  • Uma L, Hariharan J, Sharma Y, Balasubramanian D. Effect of UVB radiation on corneal aldehyde dehydrogenase. Curr Eye Res 1996; 15: 685–690.
  • Cejkova J, Stipek S, Crkovska J, Ardanl T. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays: histochemical and biochemical study. Histol Histopathol 2000; 15: 1043–1050.
  • Cejkova J. Reactive oxygen species (ROS)‐generating oxidases in the normal rabbit cornea and their involvement in the corneal damage evoked by UVB rays. Histol Histopathol 2001; 16: 523–533.
  • Bilgihan K, Adiguzel U, Sezer C, Akyol G, Hasanreisoglu B. Effects of topical vitamin E on keratocyte apoptosis after traditional photorefractive keratectomy. Ophthalmologica 2001; 215: 192–196.
  • Ciuffi M, Pisanello M, Pagliai G, Raimondi L, Franchi‐micheli S, Cantore M, Mazzetti L et al. Antioxidant protection in cultured corneal cells and whole corneas submitted to UV‐B exposure. J Photochem Photobiol B 2003; 71: 59–68.
  • Williams RN, Paterson CA, Eakins KE, Bhattacherjee P. Ascorbic acid inhibits the activity of polymorphonuclear leukocytes in inflamed ocular tissues. Exp Eye Res 1984; 39: 261–265.
  • Demir Ü, Demir T, Ilhan N. The protective effect of alpha‐lipoic acid against oxidative damage in rabbit conjunctiva and cornea exposed to ultraviolet radiation. Ophthalmologica 2005; 219: 49–53.
  • Pei Y, Reins RY, Mcdermott AM. Aldehyde dehydrogenase (ALDH) 3A1 expression by the human keratocyte and its repair phenotypes. Exp Eye Res 2006; 83: 1063–1073.
  • Feng Y, Feng Y, Zhu X, Dang Y, Ma Q. Alkali burn causes aldehyde dehydrogenase 3A1 (ALDH3A1) decrease in mouse cornea. Mol Vis 2004; 10: 845–850.
  • Patil K, Bellner L, Cullaro G, Gotlinger KH, Dunn MW, Schwartzman ML. Heme oxygenase‐1 induction attenuates corneal inflammation and accelerates wound healing after epithelial injury. Invest Ophthalmol Vis Sci 2008; 49: 3379–3386.
  • Halilovic A, Patil KA, Bellner L, Marrazzo G, Castellano K, Cullaro G, Dunn MW et al. Knockdown of heme oxygenase‐2 impairs corneal epithelial cell wound healing. J Cell Physiol 2001; 226: 1732–1740.
  • Bellner L, Martinelli L, Halilovic A, Patil K, Puri N, Dunn MW, Regan RF et al. Heme oxygenase‐2 deletion causes endothelial cell activation marked by oxidative stress, inflammation and angiogenesis. J Pharmacol Exp Ther 2009; 331: 925–932.
  • Rubowitz A, Assia EI, Rosner M, Topaz M. Antioxidant protection against corneal damage by free radicals during phacoemulsification. Invest Ophthalmol Vis Sci 2003; 44: 1866–1870.
  • Pan Q, Qiu WY, Huo YN, Yao YF, Lou MF. Low levels of hydrogen peroxide stimulate corneal epithelial cell adhesion, migration and wound healing. Invest Ophthalmol Vis Sci 2011; 52: 1723–1734.
  • Huo Y, Qiu WY, Pan Q, Yao YF, Xing K, Lou MF. Reactive oxygen species (ROS) are essential mediators in epidermal growth factor (EGF)‐stimulated corneal epithelial cell proliferation, adhesion, migration, and wound healing. Exp Eye Res 2009; 89: 876–886.
  • Chwa M, Atilano SR, Reddy V, Jordan N, Kim DW, Kenney MC. Increased stress‐induced generation of reactive oxygen species and apoptosis in human keratoconus fibroblasts. Invest Ophthalmol Vis Sci 2006; 47: 1902–1910.
  • Kenney MC, Chwa M, Atilano SR. Increased production of reactive oxygen species by keratoconus fibroblasts in vitro. Invest Ophthalmol Vis Sci 2005; 46: 4962–B165.
  • Atilano SR, Coskun P, Chwa M, Jordan N, Reddy V, Le K, Wallace DC et al. Accumulation of mitochondrial DNA damage in keratoconus corneas. Invest Ophthalmol Vis Sci 2005; 6: 1256–1263.
  • Arnal E, Peris‐martínez C, Menezo JL, Johnsen‐soriano S, Romero FJ. Oxidative stress in keratoconus? Invest Ophthalmol Vis Sci 2011; 52: 8592–8597.
  • Buddi R, Lin B, Atilano SR, Zorapapel NC, Kenney MC, Brown DJ. Evidence of oxidative stress in human corneal diseases. J Histochem Cytochem 2002; 50: 341–351.
  • Kenney MC, Chwa M, Alba A, Saghizadeh M, Huang ZS, Brown DJ. Localization of TIMP‐1, TIMP‐2, TIMP‐3, gelatinase A and gelatinase B in pathological human corneas. Curr Eye Res 1998; 17: 238–246.
  • Zhou L, Sawaguchi S, Twining SS, Sugar J, Feder RS, Yue BY. Expression of degradative enzymes and protease inhibitors in corneas with keratoconus. Invest Ophthalmol Vis Sci 1998; 39: 1117–1124.
  • Whitelock RB, Fukuchi T, Zhou L, Twining SS, Sugar J, Feder RS, Yue BY. Cathepsin G, acid phosphatase, and alpha 1‐proteinase inhibitor messenger RNA levels in keratoconus corneas. Invest Ophthalmol Vis Sci 1997; 38: 529–534.
  • Kenney MC, Chwa M, Atilano SR, Tran A, Carballo M, Saghizadeh M, Vasiliou V et al. Increased levels of catalase and cathepsin V/L2 but decreased TIMP‐1 in keratoconus corneas: evidence that oxidative stress plays a role in this disorder. Invest Ophthalmol Vis Sci 2005; 46: 823–832.
  • Mackiewicz ZPD, Maatta MMDP, Stenman M, Konttinen L, Tervo TP, Konttinen YTMDP. Collagenolytic proteinases in keratoconus. Cornea 2006; 25: 603–610.
  • Chwieralski C, Welte T, Bühling F. Cathepsin‐regulated apoptosis. Apoptosis 2006; 11: 143–149.
  • Reiser J, Adair B, Reinheckel T. Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 2010; 120: 3421–3431.
  • Calcerrada P, Peluffo G, Radi R. Nitric oxide‐derived oxidants with a focus on peroxynitrite: molecular targets, cellular responses and therapeutic implications. Curr Pharm Des 2011; 17: 3905–3932.
  • Yanagiya N, Akiba J, Kado M, Yoshida A, Kono T, Iwamoto J. Transient corneal edema induced by nitric oxide synthase inhibition. Nitric Oxide 1997; 1: 397–403.
  • Sennlaub F, Courtois Y, Goureau O. Nitric oxide synthase‐II is expressed in severe corneal alkali burns and inhibits neovascularization. Invest Ophthalmol Vis Sci 1999; 40: 2773–2779.
  • Wang ZY, Alm P, Håkanson R. The contribution of nitric oxide to endotoxin‐induced ocular inflammation: interaction with sensory nerve fibres. Br J Pharmacol 1996; 118: 1537–1543.
  • Cha SH, Park JE, Kwak JO, Kim HW, Kim JB, Lee KY, Cha YN. Attenuation of extracellular acidic pH‐induced cyclooxygenase‐2 expression by nitric oxide. Mol Cells 2005; 30: 232–238.
  • Chwa M, Atilano SR, Reddy V, Jordan N, Kim DW, Kenney MC. Increased stress‐induced generation of reactive oxygen species and apoptosis in human keratoconus fibroblasts. Invest Ophthalmol Vis Sci 2006; 47: 1902–1910.
  • Srivastava OP, Chandrasekaran D, Pfister RR. Molecular changes in selected epithelial proteins in human keratoconus corneas compared to normal corneas. Mol Vis 2006; 12:1615–1625.
  • Chandrasekaran D, Srivastava O, Pfister R. Determination of molecular changes in selected epithelial proteins in human keratoconus corneas compared to normal corneas. Invest Ophthalmol Vis Sci 2002; 43: E‐abstract 1664.
  • Nielsen K, Vorum H, Fagerholm P, Birkenkamp‐demtröder K, Honoré B, Ehlers N, Orntofta TF. Proteome profiling of corneal epithelium and identification of marker proteins for keratoconus: a pilot study. Expt Eye Res 2006; 82: 201–209.
  • Zieske JD, Bukusoglu Gl, Yankauckas MA, Wasson ME, Keutmann HT. Alpha‐enolase is restricted to basal cells of stratified squamous epithelium. Dev Biol 1992; 151: 18–26.
  • Pancholi V. Multifunctional α‐enolase: its role in diseases. Cell Mol Life Sci 2001; 58: 902–920.
  • Bonis D. Mutational screening of VSX1, SPARC, SOD1, LOX, and TIMP3 in keratoconus. Mol Vis 2011; 17: 2482–2494.
  • Saee‐rad S, Hashemi H, Miraftab M, Noori‐daloii MR, Chaleshtori MH, Raoofian R, Jafari F et al. Mutation analysis of VSX1 and SOD1 in iranian patients with keratoconus. Mol Vis 2011; 17: 3128–3136.
  • Udar N, Atilano SR, Small K, Nesburn AB, Kenney MC. SOD1 haplotypes in familial keratoconus. Cornea 2009; 28: 902–907.
  • Pathak D, Nayak B, Singh M, Sharma N, Tandon R, Sinha R, Titiyal S et al. Mitochondrial complex 1 gene analysis in keratoconus. Mol Vis 2011; 17: 1514–1525.
  • Kang J, Pervaiz S. Mitochondria: redox metabolism and dysfunction. Biochem Res Int [serial on the Internet]. 2012 Apr 14. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347708/ [Accessed July 2012].
  • Olofsson EM, Marklund SL, Pedrosa‐domellöf F, Behndig A. Interleukin‐1α downregulates extracellular‐superoxide dismutase in human corneal keratoconus stromal cells. Mol Vis 2007; 13: 1285–1290.
  • Brown DJ, Lin B, Chwa M, Atilano SR, Kim DW, Kenney MC. Elements of the nitric oxide pathway can degrade TIMP‐1 and increase gelatinase activity. Mol Vis 2004; 10: 281–288.
  • Balasubramanian SA, Pye DC, Willcox MDP. Are proteinases the reason for keratoconus? Curr Eye Res 2010; 35: 185–191.
  • Kenney MC, Chwa M, Opbroek AJ, Brown DJ. Increased gelatinolytic activity in keratoconus keratocyte cultures: a correlation to an altered matrix metalloproteinase‐2/tissue inhibitor of metalloproteinase ratio. Cornea 1994; 13: 114–124.
  • Romero‐jiménez M, Santodomingo‐rubido J, Wolffsohn JS. Keratoconus: a review. Cont Lens Anterior Eye 2010; 33: 157–166.
  • Fantone JC, Ward PA. Role of oxygen‐derived free radicals and metabolites in leukocyte‐dependent inflammatory reactions. Am J Pathol 1982; 107: 395–418.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.