32
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Beneficial effect of the antioxidant riboflavin on gene expression of extracellular matrix elements, antioxidants and oxidases in keratoconic stromal cells

, MSc PGDipSc BSc, , PhD FRCS FRCOphth FRANZCO FRSA & , PhD BSc(Hons)
Pages 349-355 | Received 11 Aug 2013, Accepted 04 Dec 2013, Published online: 15 Apr 2021

References

  • Rabinowitz Y. Keratoconus. Surv Ophthalmol 1998; 42: 297–319.
  • Colin J, Velou S. Current surgical options for keratoconus. J Cataract Refract Surg 2003; 29: 379–386.
  • Al‐yousuf N, Mavrikakis I, Mavrikakis E, Daya S. Penetrating keratoplasty: indications over a 10 year period. Br J Ophthalmol 2004; 88: 998–1001.
  • Cunningham WJ, Brookes NH, Twohill HC, Moffatt SL, Pendergrast DGC, Stewart JM, Mcghee CN. Trends in the distribution of donor corneal tissue and indications for corneal transplantation: the New Zealand National Eye Bank Study 2000–2009. Clin Experiment Ophthalmol 2012; 40: 141–147.
  • Wollensak G, Spoerl E, Seiler T. Stress‐strain measurements of human and porcine corneas after riboflavin‐ultraviolet‐A‐induced cross‐linking. J Cataract Refract Surg 2003; 29: 1780–1785.
  • Dahl B, Spotts E, Truong J. Corneal collagen cross‐linking: an introduction and literature review. Optometry 2012; 83: 33–42.
  • Sherwin T, Brookes NH. Morphological changes in keratoconus: pathology or pathogenesis? Clin Experiment Ophthalmol 2004; 32: 211–217.
  • Ambekar R, Toussaint KC Jr, Wagoner johnson A. The effect of keratoconus on the structural, mechanical, and optical properties of the cornea. J Mech Behav Biomed Mater 2011; 4: 223–236.
  • Cheung I, Mcghee CNJ, Sherwin T. A new perspective on the pathobiology of keratoconus: interplay of stromal wound healing and reactive species associated processes. Clin Exp Optom 2013; 96: 188–196.
  • Kim WJ, Rabinowitz YS, Meisler DM, Wilson SE. Keratocyte apoptosis associated with keratoconus. Exp Eye Res 1999; 69: 475–481.
  • Kaldawy RM, Wagner J, Ching S, Seigel GM. Evidence of apoptotic cell death in keratoconus. Cornea 2002; 21: 206–209.
  • Rabinowitz YS, Dong L, Wistow G. Gene expression profile studies of human keratoconus cornea for NEIBank: a novel cornea‐expressed gene and the absence of transcripts for aquaporin 5. Invest Ophthalmol Vis Sci 2005; 46: 1239–1246.
  • Ha NT, Nakayasu K, Murakami A, Ishidoh K, Kanai A. Microarray analysis identified differentially expressed genes in keratocytes from keratoconus patients. Curr Eye Res 2004; 28: 373–379.
  • Lee JE, Oum BS, Choi HY, Lee SU, Lee JS. Evaluation of differentially expressed genes identified in keratoconus. Mol Vis 2009; 15: 2480–2487.
  • Becker J, Salla S, Dohmen U, Redbrake C, Reim M. Explorative study of interleukin levels in the human cornea. Graefes Arch Clin Exp Ophthalmol 1995; 233: 766–771.
  • Zhou L, Yue B, Twining S, Sugar J, Feder R. Expression of wound healing and stress‐related proteins in keratoconus corneas. Curr Eye Res 1996; 15: 1124–1131.
  • Fabre EJ, Bureau J, Pouliquen Y, Lorans G. Binding sites for human interleukin 1 alpha, gamma interferon and tumor necrosis factor on cultured fibroblasts of normal cornea and keratoconus. Curr Eye Res 1991; 10: 585–592.
  • Wilson SE, Mohan RR, Mohan RR, Ambrósio jr R, Hong JW, Lee JS. The corneal wound healing response: cytokine‐mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Retin Eye Res 2001; 20: 625–637.
  • Sherwin T, Green CR. Stromal wound healing. In: Brightbill FS, Mcdonnell PJ, Mcghee CNJ, Farjo AA, Serdarevic ON, eds. Corneal Surgery: Theory, Technique and Tissue, 4th edn. Missouri: Mosby Elsevier, 2009. p 45–56.
  • Engler C, Chakravarti S, Doyle J, Eberhart CG, Meng H, Stark WJ, Kelliher C et al. Transforming growth factor‐b signaling pathway activation in keratoconus. Am J Ophthalmol 2011; 151: 752–759.
  • Lee JE, Oum BS, Choi HY, Lee SU, Lee JS. Evaluation of differentially expressed genes identified in keratoconus. Mol Vis 2009; 15: 2480–2487.
  • Efron N, Hollingsworth JG. New perspectives on keratoconus as revealed by corneal confocal microscopy. Clin Exp Optom 2008; 91: 34–55.
  • Yue BYJT, Sugar J, Benveniste K. Heterogeneity in keratoconus: possible biochemical basis. Proc Soc Exp Biol Med 1984; 175: 336–341.
  • Kenney MC, Chwa M, Escobar M, Brown D. Altered gelatinolytic activity by keratoconus corneal cells. Biochem Biophys Res Commun 1989; 161: 353–357.
  • Kao WWY, Vergnes JP, Ebert J, Sundar raj CV, Brown SI. Increased collagenase and gelatinase activities in keratoconus. Biochem Biophys Res Commun 1982; 107: 929–936.
  • Arnal E, Peris‐martínez C, Menezo JL, Johnsen‐soriano S, Romero FJ. Oxidative stress in keratoconus? Invest Ophthalmol Vis Sci 2011; 52: 8592–8597.
  • Kenney MC, Chwa M, Opbroek AJ, Brown DJ. Increased gelatinolytic activity in keratoconus keratocyte cultures. A correlation to an altered matrix metalloproteinase‐2/tissue inhibitor of metalloproteinase ratio. Cornea 1994; 13: 114–124.
  • Kenney MC, Chwa M, Atilano SR, Tran A, Carballo M, Saghizadeh M, Vasiliou V et al. Increased levels of catalase and cathepsin V/L2 but decreased TIMP‐1 in keratoconus corneas: evidence that oxidative stress plays a role in this disorder. Invest Ophthalmol Vis Sci 2005; 46: 823–832.
  • Nelidova D, Sherwin T. Keratoconus layer by layer—pathology and matrix metalloproteinases [monograph on the Internet]. InTech; 2012 Mar. Available from: http://www.intechopen.com/books/advances‐in‐ophthalmology/the‐matrix‐metalloproteinasehypothesis‐of‐keratoconus‐layer‐by‐layer. [Acessed Aug 2013].
  • Tuori A, Virtanen I, Aine E, Uusitalo H. The expression of tenascin and fibronectin in keratoconus, scarred and normal human cornea. Graefes Arch Clin Exp Ophthalmol 1997; 235: 222–229.
  • Sawaguchi S, Yue BY, Chang I, Sugar J, Robin J. Proteoglycan molecules in keratoconus corneas. Invest Ophthalmol Vis Sci 1991; 32: 1846–1853.
  • Maatta M, Vaisanen T, Vaisanen MR, Pihlajaniemi T, Tervo T. Altered expression of type XIII collagen in keratoconus and scarred human cornea: increased expression in scarred cornea is associated with myofibroblast transformation. Cornea 2006; 25: 448–453.
  • Maatta MP, Heljasvaara RP, Sormunen RP, Pihlajaniemi TP, Autio‐harmainen HP, Tervo TP. Differential expression of collagen types XVIII/endostatin and XV in normal, keratoconus and scarred human corneas. Cornea 2006; 25: 341–349.
  • Buddi R, Lin B, Atilano SR, Zorapapel NC, Kenney MC, Brown DJ. Evidence of oxidative stress in human corneal diseases. J Histochem Cytochem 2002; 50: 341–351.
  • Sawaguchi S, Yue B, Sugar J, Gilboy J. Lysosomal enzyme abnormalities in keratoconus. Arch Ophthalmol 1989; 107: 1507–1510.
  • Zhou L, Sawaguchi S, Twining SS, Sugar J, Feder RS, Yue BY. Expression of degradative enzymes and protease inhibitors in corneas with keratoconus. Invest Ophthalmol Vis Sci 1998; 39: 1117–1124.
  • Whitelock RB, Fukuchi T, Zhou L, Twining SS, Sugar J, Feder RS, Yue B. Cathepsin G, acid phosphatase, and alpha 1‐proteinase inhibitor messenger RNA levels in keratoconus corneas. Invest Ophthalmol Vis Sci 1997; 38: 529–534.
  • Mackiewicz Z, Määttä M, Stenman M, Konttinen L, Tervo T, Konttinen Y. Collagenolytic proteinases in keratoconus. Cornea 2006; 25: 603–610.
  • Atilano SR, Coskun P, Chwa M, Jordan N, Reddy V, Le K, Wallace DC et al. Accumulation of mitochondrial DNA damage in keratoconus corneas. Invest Ophthalmol Vis Sci 2005; 46: 1256–1263.
  • Chwa M, Atilano SR, Reddy V, Jordan N, Kim DW, Kenney MC. Increased stress‐induced generation of reactive oxygen species and apoptosis in human keratoconus fibroblasts. Invest Ophthalmol Vis Sci 2006; 47: 1902–1910.
  • Kenney MC, Chwa M, Atilano SR. Increased production of reactive oxygen species by keratoconus fibroblasts in vitro. Invest Ophthalmol Vis Sci 2005; 46: E‐abstract 4962.
  • Chwa M, Atilano SR, Hertzog D, Zheng H, Langberg J, Kim DW, Kenney MC. Hypersensitive response to oxidative stress in keratoconus corneal fibroblasts. Invest Ophthalmol Vis Sci 2008; 49: 4361–4369.
  • Srivastava OP, Chandrasekaran D, Pfister RR. Molecular changes in selected epithelial proteins in human keratoconus corneas compared to normal corneas. Mol Vis 2006; 12: 1615–1625.
  • Nielsen K, Vorum H, Fagerholm P, Birkenkamp‐demtröder K, Honoré B, Ehlers N, Orntoft TF. Proteome profiling of corneal epithelium and identification of marker proteins for keratoconus, a pilot study. Exp Eye Res 2006; 82: 201–209.
  • Behndig A, Karlsson K, Johansson BO, Brännström T, Marklund SL. Superoxide dismutase isoenzymes in the normal and diseased human cornea. Invest Ophthalmol Vis Sci 2001; 42: 2293–2296.
  • Schäfer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacol Res 2008; 58: 165–171.
  • Bryan N, Ahswin H, Smart N, Bayon Y, Wohlert S, Hunt JA. Reactive oxygen species (ROS)—a family of fate deciding molecules pivotal in constructive inflammation and wound healing. Eur Cell Mater 2012; 24: 249–265.
  • Kanta J. The role of hydrogen peroxide and other reactive oxygen species in wound healing. Acta Medica (Hradec Kralove) 2011; 54: 97–101.
  • Patil K, Bellner L, Cullaro G, Gotlinger KH, Dunn MW, Schwartzman ML. Heme oxygenase‐1 induction attenuates corneal inflammation and accelerates wound healing after epithelial injury. Invest Ophthalmol Vis Sci 2008; 49: 3379–3386.
  • Halilovic A, Patil KA, Bellner L, Marrazzo G, Castellano K, Cullaro G, Dunn MW et al. Knockdown of heme oxygenase‐2 impairs corneal epithelial cell wound healing. J Cell Physiol 2011; 226: 1732–1740.
  • Bellner L, Martinelli L, Halilovic A, Patil K, Puri N, Dunn MW, Regan RF, Schwartzman ML. Heme oxygenase‐2 deletion causes endothelial cell activation marked by oxidative stress, inflammation, and angiogenesis. J Pharmacol Exp Ther 2009; 331: 925–932.
  • Rubowitz A, Assia EI, Rosner M, Topaz M. Antioxidant protection against corneal damage by free radicals during phacoemulsification. Invest Ophthalmol Vis Sci 2003; 44: 1866–1870.
  • Wentz‐hunter K, Cheng E, Ueda J, Sugar J, Yue B. Keratocan expression is increased in the stroma of keratoconus corneas. Mol Med 2001; 7: 470–477.
  • Joseph R, Srivastava O, Pfister R. Differential epithelial and stromal protein profiles in keratoconus and normal human corneas. Exp Eye Res 2010; 92: 282–298.
  • Morton K, Hutchinson C, Jeanny J, Karpouzas I, Pouliquen Y, Courtois Y. Colocalization of fibroblast growth factor binding sites with extracellular matrix components in normal and keratoconus corneas. Curr Eye Res 1989; 8: 975–987.
  • Kenney M, Brown D. The cascade hypothesis of keratoconus. Cont Lens Anterior Eye 2003; 26: 139–146.
  • Mcmonnies CW. Abnormal rubbing and keratectasia. Eye Contact Lens 2007; 33: 265–271.
  • Gasset AR, Houde WL, Garcia‐bengochea M. Hard contact lens wear as an environmental risk in keratoconus. Am J Ophthalmol 1978; 85: 339–341.
  • Panchatcharam M, Miriyala S, Gayathri V, Suguna L. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol Cell Biochem 2006; 290: 87–96.
  • Srinivas reddy B, Kiran kumar reddy R, Naidu VG, Madhusudhana K, Agwane SB, Ramakrishna S, Diwan PV. Evaluation of antimicrobial, antioxidant and wound‐healing potentials of Holoptelea integrifolia. J Ethnopharmacol 2008; 115: 249–256.
  • Lefaix J‐L, Delanian S, Leplat J‐J, Tricaud Y, Martin M, Nimrod A, Baillet F et al. Successful treatment of radiation‐induced fibrosis using CuZn‐SOD and Mn‐SOD: an experimental study. Int J Radiat Oncol Biol Phys 1996; 35: 305–312.
  • Pugazhenthi K, Kapoor M, Clarkson AN, Hall I, Appleton I. Melatonin accelerates the process of wound repair in full‐thickness incisional wounds. J Pineal Res 2008; 44: 387–396.
  • Chandrasekaran D, Srivastava O, Pfister R. Determination of molecular changes in selected epithelial proteins in human keratoconus corneas compared to normal corneas. Invest Ophthalmol Vis Sci 2002; 43: 1615–1625.
  • Nier B, Weinberg PD, Rimbach G, Stöcklin E, Barella L. Differential gene expression in skeletal muscle of rats with vitamin E deficiency. IUBMB Life 2006; 58: 540–548.
  • Estey T, Piatigorsky J, Lassen N, Vasiliou V. ALDH3A1: a corneal crystallin with diverse functions. Exp Eye Res 2007; 84: 3–12.
  • Zhao J, Tan S, Liu F, Zhang Y, Su M, Sun D. Heme oxygenase and ocular disease: a review of the literature. Curr Eye Res 2012; 37: 955–960.
  • Behndig A. Corneal endothelial integrity in aging mice lacking superoxide dismutase‐1 and/or superoxide dismutase‐3. Mol Vis 2008; 14: 2025–2030.
  • Ando E, Ando Y, Inoue M, Morino Y, Kamata R, Okamura R. Inhibition of corneal inflammation by an acylated superoxide dismutase derivative. Invest Ophthalmol Vis Sci 1990; 31: 1963–1967.
  • Zhan C‐D, Sindhu RK, Vaziri ND. Up‐regulation of kidney NAD(P)H oxidase and calcineurin in SHR: reversal by lifelong antioxidant supplementation. Kidney Int 2004; 65: 219–227.
  • Zhu X‐Y, Chade AR, Rodriguez‐porcel M, Bentley MD, Ritman EL, Lerman A, Lerman LO. Cortical microvascular remodeling in the stenotic kidney: role of increased oxidative stress. Arterioscler Thromb Vasc Biol 2004; 24: 1854–1859.
  • Jiang F, Zhang Y, Dusting GJ. NADPH oxidase‐mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 2011; 63: 218–242.
  • Sen CK, Roy S. Redox signals in wound healing. Biochim Biophys Acta 2008; 1780: 1348–1361.
  • Soneja A, Drews M, Malinski T. Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol Rep 2005; 57: 108–119.
  • Juránek I, Bezek S. Controversy of free radical hypothesis: reactive oxygen species‐cause or consequence of tissue injury? Gen Physiol Biophys 2005; 24: 263–278.
  • Rojkind M, Domínguez‐rosales J, Nieto N, Greenwel P. Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol Life Sci 2002; 59: 1872–1891.
  • Olofsson EM, Marklund SL, Pedrosa‐domellöf F, Behndig A. Interleukin‐1alpha downregulates extracellular‐superoxide dismutase in human corneal keratoconus stromal cells. Mol Vis 2007; 13: 1285–1290.
  • Balasubramanian SA, Pye DC, Willcox MDP. Are proteinases the reason for keratoconus? Curr Eye Res 2010; 35: 185–191.
  • Kenney MC, Chwa M, Alba A, Saghizadeh M, Huang ZS, Brown DJ. Localization of TIMP‐1, TIMP‐2, TIMP‐3, gelatinase A and gelatinase B in pathological human corneas. Curr Eye Res 1998; 17: 238–246.
  • Crooke A, Huete‐toral F, Martínez‐águila A, Colligris B, Pintor J. Ocular disorders and the utility of animal models in the discovery of melatoninergic drugs with therapeutic potential. Expert Opin Drug Discov 2012; 7: 989–1001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.