311
Views
63
CrossRef citations to date
0
Altmetric
Review

Biomechanical properties of the keratoconic cornea: a review

, BOptom & , PhD MRCOphth
Pages 31-38 | Received 29 May 2014, Accepted 21 Jun 2014, Published online: 15 Apr 2021

References

  • Ortiz D, Piñero D, Shabayek MH, Arnalich‐montiel F, Alió JL. Corneal biomechanical properties in normal, post‐laser in situ keratomileusis,and keratoconic eyes. J Cataract Refract Surg 2007; 33: 1371–1375.
  • Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: A new paradigm for understanding the role of IOP‐related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 2005; 24: 39–73.
  • Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol 1984; 28: 293–322.
  • Lawless M, Coster DJ, Phillips AJ, Loane M. Keratoconus: Diagnosis and management. Aust N Z J Ophthalmol 1989; 17: 33–60.
  • Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998; 42: 297–319.
  • Mcghee CN. 2008 Sir Norman McAlister Gregg Lecture: 150 years of practical observations on the conical cornea–what have we learned? Clin Experiment Ophthalmol 2009; 37: 160–176.
  • Ljubic A. Keratoconus and its prevalence in Macedonia. Macedonian J Med Sci 2009; 2: 58–62.
  • Jonas JB, Nangia V, Matin A, Kulkarni M, Bhojwani K. Prevalence and associations of keratoconus in rural maharashtra in central india: The central india eye and medical study. Am J Ophthalmol 2009; 148: 760–765.
  • Dupps WJ Jr, Wilson SE. Biomechanics and wound healing in the cornea. Exp Eye Res 2006; 83: 709–720.
  • Edmund C. Corneal elasticity and ocular rigidity in normal and keratoconic eyes. Acta Ophthalmol 1988; 66: 134–140.
  • Rosato DV, Schott NR, Rosato MG. Plastics Institute of America Plastics Engineering, Manufacturing & Data Handbook. New York: Springer; 2001.
  • Barbucci R. Integrated Biomaterials Science. New York: Springer; 2002.
  • Sherwin T, Brookes NH. Morphological changes in keratoconus: Pathology or pathogenesis. Clin Experiment Ophthalmol 2004; 32: 211–217.
  • Teng CC. Electron microscope study of the pathology of keratoconus: I. Am J Ophthalmol 1963; 55: 18–47.
  • Somodi S, Hahnel C, Slowik C, Richter A, Weiss DG, Guthoff R. Confocal in vivo microscopy and confocal laser‐scanning fluorescence microscopy in keratoconus. Ger J Ophthalmol 1996; 5: 518–525.
  • Elsheikh A, Alhasso D, Rama P. Assessment of the epithelium's contribution to corneal biomechanics. Exp Eye Res 2008; 86: 445–451.
  • Litwin KL, Moreira H, Ohadi C, Mcdonnell PJ. Changes in corneal curvature at different excimer laser ablative depths. Am J Ophthalmol 1991; 111: 382–384.
  • Dorronsoro C, Pascual D, Pérez‐merino P, Kling S, Marcos S. Dynamic OCT measurement of corneal deformation by an air puff in normal and cross‐linked corneas. Biomed Opt Express 2012; 3: 473–487.
  • Sawaguchi S, Fukuchi T, Abe H, Kaiya T, Sugar J, Yue BY. Three‐dimensional scanning electron microscopic study of keratoconus corneas. Arch Ophthalmol 1998; 116: 62–68.
  • Seiler T, Matallana M, Sendler S, Bende T. Does bowman's layer determine the biomechanical properties of the cornea? Refract Corneal Surg 1992; 8: 139–142.
  • Wilson SE, Hong J. Bowman's layer structure and function: Critical or dispensable to corneal function? A hypothesis. Cornea 2000; 19: 417–420.
  • Scroggs MW, Proia AD. Histopathological variation in keratoconus. Cornea 1992; 11: 553–559.
  • Takahashi A, Nakayasu K, Okisaka S, Kanai A. Quantitative analysis of collagen fiber in keratoconus. Nihon Ganka Gakkai Zasshi 1990; 94: 1068–1073.
  • Daxer A, Fratzl P. Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. Invest Ophthalmol Vis Sci 1997; 38: 121–129.
  • Cannon DJ, Foster CS. Collagen crosslinking in keratoconus. Invest Ophthalmol Vis Sci 1978; 17: 63–65.
  • Ambrósio R Jr, Alonso RS, Luz A, Coca velarde LG. Corneal‐thickness spatial profile and corneal‐volume distribution: Tomographic indices to detect keratoconus. J Cataract Refract Surg 2006; 32: 1851–1859.
  • Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, Lamantia C, Carroll H. Lumican regulates collagen fibril assembly: Skin fragility and corneal opacity in the absence of lumican. J Cell Biol 1998; 141: 1277–1286.
  • Wollensak J, Buddecke E. Biochemical studies on human corneal proteoglycans—a comparison of normal and keratoconic eyes. Graefes Arch Clin Experiment Ophthalmol 1990; 228: 517–523.
  • Sawaguchi S, Yue BY, Chang I, Sugar J, Robin J. Proteoglycan molecules in keratoconus corneas. Invest Ophthalmol Vis Sci 1991; 32: 1846–1853.
  • Erie JC, Patel SV, Mclaren JW, Nau CB, Hodge DO, Bourne WM. Keratocyte density in keratoconus. A confocal microscopy study. Am J Ophthalmol 2002; 134: 689–695.
  • Snyder MC, Bergmanson JP, Doughty MJ. Keratocytes: No more the quiet cells. J Am Optom Assoc 1998; 69: 180–187.
  • Ku JY, Niederer RL, Patel DV, Sherwin T, Mcghee CN. Laser scanning in vivo confocal analysis of keratocyte density in keratoconus. Ophthalmology 2008; 115: 845–850.
  • Kim W, Rabinowitz YS, Meisler DM, Wilson SE. Keratocyte apoptosis associated with keratoconus. Exp Eye Res 1999; 69: 475–481.
  • Wong TT, Sethi C, Daniels JT, Limb GA, Murphy G, Khaw PT. Matrix metalloproteinases in disease and repair processes in the anterior segment. Surv Ophthalmol 2002; 47: 239–256.
  • Danielsen CC. Tensile mechanical and creep properties of Descemet's membrane and lens capsule. Exp Eye Res 2004; 79: 343–350.
  • Ojeda JL, Ventosa JA, Piedra S. The three‐dimensional microanatomy of the rabbit and human cornea. A chemical and mechanical microdissection‐SEM approach. J Anat 2001; 199: 567–576.
  • Roberts C. Biomechanics in keratoconus. In: Adel B. ed. Textbook on Keratoconus: New Insights. London: Jaypee Brothers Medical Publishers, 2012. p 29–32.
  • Mcmonnies CW, Schief WK. Biomechanically coupled curvature transfer in normal and keratoconus corneal collagen. Eye Contact Lens 2006; 32: 51–62.
  • Smolek MK, Klyce SD. Is keratoconus a true ectasia?: An evaluation of corneal surface area. Arch Ophthalmol 2000; 118: 1179–1186.
  • Andreassen T, Simonsen A, Oxlund H. Biomechanical properties of keratoconus and normal corneas. Exp Eye Res 1980; 31: 435–441.
  • Nash I, Greene P, Foster C. Comparison of mechanical properties of keratoconus and normal corneas. Exp Eye Res 1982; 35: 413–424.
  • Fung Y. Stress‐strain‐history relations of soft tissues in simple elongation. In: Fung YC. ed. Biomechanics: Its Fundations and Objectives. Inglewood Cliffs, New ersey: Prentice‐Hall, 1972. p 181–208.
  • Mcmonnies CW. The possible significance of the baropathic nature of keratectasias. Clin Exp Optom 2013; 96: 97–200.
  • Elsheikh A, Anderson K. Comparative study of corneal strip extensometry and inflation tests. J R Soc Interface 2005; 2: 177–185.
  • Hibbard RR, Lyon CS, Shepherd MD, Mcbain EH, Mcewen WK. Immediate rigidity of an eye: I. Whole, segments and strips. Exp Eye Res 1970; 9: 137–143.
  • Friedenwald JS. Contribution to the theory and practice of tonometry. Am J Ophthalmol 1937; 20: 985–1024.
  • Hartstein J, Becker B. Research into the pathogenesis of keratoconus: A new syndrome: Low ocular rigidity, contact lenses and keratoconus. Arch Ophthalmol 1970; 84: 728–729.
  • Foster CS, Yamamoto GK. Ocular rigidity in keratoconus. Am J Ophthalmol 1978; 86: 802–806.
  • White OW. Ocular elasticity? Ophthalmology 1990; 97: 1092–1094.
  • Kalenak JW, White O. More ocular elasticity? Ophthalmology 1991; 98: 411–412.
  • Dupps WJ Jr, Netto MV, Herekar S, Krueger RR. Surface wave elastometry of the cornea in porcine and human donor eyes. J Refract Surg 2007; 23: 66–75.
  • He X, Liu J. A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties. Invest Ophthalmol Vis Sci 2009; 50: 5148–5154.
  • Scarcelli G, Yun SH. In vivo brillouin optical microscopy of the human eye. Opt Express 2012; 20: 9197–9202.
  • Ford MR, Dupps WJ, Rollins AM, Roy AS, Hu Z. Method for optical coherence elastography of the cornea. J Biomed Opt 2011; 16: 016005.
  • Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005; 31: 156–162.
  • Dupps WJ. Hysteresis: New mechanospeak for the ophthalmologist. J Cataract Refract Surg 2007; 33: 1499–1501.
  • Chen MC, Lee N, Bourla N, Hamilton DR. Corneal biomechanical measurements before and after laser in situ keratomileusis. J Cataract Refract Surg 2008; 34: 1886–1891.
  • Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci 2007; 48: 3026–3031.
  • Kirwan C, O'malley D, O'keefe M. Corneal hysteresis and corneal resistance factor in keratoectasia: Findings using the reichert ocular response analyzer. Ophthalmologica 2008; 222: 334–337.
  • Fontes BM, Ambrósio Jr R, Jardim D, Velarde GC, Nosé W. Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology 2010; 117: 673–679.
  • Saad A, Lteif Y, Azan E, Gatinel D. Biomechanical properties of keratoconus suspect eyes. Invest Ophthalmol Vis Sci 2010; 51: 2912–2916.
  • Fontes BM, Ambrósio Jr R, Velarde GC, Nosé W. Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes. J Refract Surg 2011; 27: 209–215.
  • Mcmonnies CW. Assessing corneal hysteresis using the ocular response analyzer. Optom Vis Sci 2012; 89: E343–E349.
  • Mikielewicz M, Kotliar K, Barraquer RI, Michael R. Air‐pulse corneal applanation signal curve parameters for the characterisation of keratoconus. Br J Ophthalmol 2011; 95: 793–798.
  • Avetisov SE, Novikov IA, Bubnova IA, Antonov AA, Siplivyi VI. Determination of corneal elasticity coefficient using the ORA database. J Refract Surg 2010; 26: 520–524.
  • Hallahan KM, Roy AS, Ambrósio R Jr, Salomao M, Dupps WJ Jr. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. Ophthalmology 2014; 121: 459–468.
  • Ambrósio R Jr, Ramos I, Luz A, Faria FC, Steinmueller A, Krug M, Belin MW et al. Dynamic ultra high speed scheimpflug imaging for assessing corneal biomechanical properties. Rev Bras Oftalmol 2013; 72: 99–102.
  • Ali NQ, Patel DV, Mcghee CN. Biomechanical responses of healthy and keratoconic corneas measured using a non contact scheimpflug tonometer. Invest Ophthalmol Vis Sci 2014; IOVS‐13‐13715.
  • Tian L, Huang Y, Wang L, Bai H, Wang Q, Jiang JJ, Wu Y et al. Corneal biomechanical assessment using corneal visualization scheimpflug technology in keratoconic and normal eyes. J Ophthalmol 2014; 2014: 147516.
  • Harper CL, Boulton ME, Bennett D, Marcyniuk B, Jarvis‐evans JH, Tullo AB, Ridgeway AE. Diurnal variations in human corneal thickness. Br J Ophthalmol 1996; 80: 1068–1072.
  • Wollensak G. Crosslinking treatment of progressive keratoconus: New hope. Curr Opin Ophthalmol 2006; 17: 356–360.
  • Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet‐a‐induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 2003; 135: 620–627.
  • Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE. Biomechanical evidence of the distribution of cross‐links in corneas treated with riboflavin and ultraviolet A light. J Cataract Refract Surg 2006; 32: 279–283.
  • Mencucci R, Marini M, Paladini I, Sarchielli E, Sgambati E, Menchini U, Vannelli GB. Effects of riboflavin/UVA corneal cross‐linking on keratocytes and collagen fibres in human cornea. Clin Experiment Ophthalmol 2010; 38: 49–56.
  • Spoerl E, Wollensak G, Dittert DD, Seiler T. Thermomechanical behavior of collagen‐cross‐linked porcine cornea. Ophthalmologica 2004; 218: 136–140.
  • Messmer EM, Meyer P, Herwig MC, Loeffler KU, Schirra F, Seitz B, Thiel M et al. Morphological and immunohistochemical changes after corneal cross‐linking. Cornea 2013; 32: 111–117.
  • Jordan C, Patel DV, Abeysekera N, Mcghee CN. In vivo confocal microscopy analyses of corneal microstructural changes in a prospective study of collagen cross‐linking in keratoconus. Ophthalmology 2014; 121: 469–474.
  • Wollensak G, Wilsch M, Spoerl E, Seiler T. Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA. Cornea 2004; 23: 503–507.
  • Spoerl E, Huhle M, Seiler T. Induction of cross‐links in corneal tissue. Exp Eye Res 1998; 66: 97–103.
  • Sporl E, Schreiber J, Hellmund K, Seiler T, Knuschke P. Cross‐linking effects in the cornea of rabbits. Ophthalmologe 2000; 97: 203–206.
  • Wollensak G, Iomdina E. Long‐term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking. Acta Ophthalmol 2009; 87: 48–51.
  • Wollensak G, Spoerl E, Seiler T. Stress‐strain measurements of human and porcine corneas after riboflavin‐ultraviolet‐A‐induced cross‐linking. J Cataract Refract Surg 2003; 29: 1780–1785.
  • Kling S, Remon L, Pérez‐escudero A, Merayo‐lloves J, Marcos S. Corneal biomechanical changes after collagen cross‐linking from porcine eye inflation experiments. Invest Ophthalmol Vis Sci 2010; 51: 3961–3968.
  • Mattson MS, Huynh J, Wiseman M, Coassin M, Kornfield JA, Schwartz DM. An in vitro intact globe expansion method for evaluation of cross‐linking treatments. Invest Ophthalmol Vis Sci 2010; 51: 3120–3128.
  • He X, Spoerl E, Tang J, Liu J. Measurement of corneal changes after collagen crosslinking using a noninvasive ultrasound system. J Cataract Refract Surg 2010; 36: 1207–1212.
  • Tanter M, Touboul D, Gennisson J, Bercoff J, Fink M. High‐resolution quantitative imaging of cornea elasticity using supersonic shear imaging. IEEE Trans Med Imaging 2009; 28: 1881–1893.
  • Scarcelli G, Kling S, Quijano E, Pineda R, Marcos S, Yun SH. Brillouin microscopy of collagen crosslinking: Non‐contact depth‐dependent analysis of corneal elastic modulus. Invest Ophthalmol Vis Sci 2013; 54: 1418–1425.
  • Kling S, Marcos S. Contributing factors to corneal deformation in air puff measurements. Invest Ophthalmol Vis Sci 2013; 54: 5078–5085.
  • Beshtawi IM, O'donnell C, Radhakrishnan H. Biomechanical properties of corneal tissue after ultraviolet‐a–riboflavin crosslinking. J Cataract Refract Surg 2013; 39: 451–462.
  • Kolozsvari L, Nogradi A, Hopp B, Bor Z. UV absorbance of the human cornea in the 240‐ to 400‐nm range. Invest Ophthalmol Vis Sci 2002; 43: 2165–2168.
  • Goldich Y, Barkana Y, Morad Y, Hartstein M, Avni I, Zadok D. Can we measure corneal biomechanical changes after collagen cross‐linking in eyes with keratoconus?–a pilot study. Cornea 2009; 28: 498–502.
  • Sedaghat M, Naderi M, Zarei‐ghanavati M. Biomechanical parameters of the cornea after collagen crosslinking measured by waveform analysis. J Cataract Refract Surg 2010; 36: 1728–1731.
  • Vinciguerra P, Albè E, Mahmoud AM, Trazza S, Hafezi F, Roberts CJ. Intra‐and postoperative variation in ocular response analyzer parameters in keratoconic eyes after corneal cross‐linking. J Refract Surg 2010; 26: 669–676.
  • Spoerl E, Terai N, Scholz F, Raiskup F, Pillunat LE. Detection of biomechanical changes after corneal cross‐linking using ocular response analyzer software. J Refract Surg 2011; 27: 452–457.
  • Goldich Y, Marcovich A, Barkana Y, Mandel Y, Hirsh A, Morad Y, Avni I et al. Clinical and corneal biomechanical changes after collagen cross‐linking with riboflavin and UV irradiation in patients with progressive keratoconus: Results after 2 years of follow‐up. Cornea 2012; 31: 609–614.
  • Greenstein SA, Fry KL, Hersh PS. In vivo biomechanical changes after corneal collagen cross‐linking for keratoconus and corneal ectasia: 1‐year analysis of a randomized, controlled, clinical trial. Cornea 2012; 31: 21–25.
  • Gkika M, Labiris G, Giarmoukakis A, Koutsogianni A, Kozobolis V. Evaluation of corneal hysteresis and corneal resistance factor after corneal cross‐linking for keratoconus. Graefes Arch Clin Exp Ophthalmol 2012; 250: 565–573.
  • Lanchares E, del Buey MA, Cristóbal JA, Lavilla L, Calvo B. Biomechanical property analysis after corneal collagen cross‐linking in relation to ultraviolet A irradiation time. Graefes Arch Clin Exp Ophthalmol 2011; 249: 1223–1227.
  • Sporl E, Terai N, Haustein M, Bohm AG, Raiskup‐wolf F, Pillunat LE. Biomechanical condition of the cornea as a new indicator for pathological and structural changes. Ophthalmologe 2009; 106: 512–520.
  • Zhang Y, Conrad A, Conrad G. Effects of ultraviolet‐A and riboflavin on the interaction of collagen and proteoglycans during corneal cross‐linking. J Biol Chem 2011; 286: 13011–13022.
  • Wollensak G, Sporl E, Mazzotta C, Kalinski T, Sel S. Interlamellar cohesion after corneal crosslinking using riboflavin and ultraviolet A light. Br J Ophthalmol 2011; 95: 876–880.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.