29
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Comparison of retinal nerve fiber layer and macular thickness for discriminating primary open‐angle glaucoma and normal‐tension glaucoma using optical coherence tomography

, OD, , OD PhD, , PhD & , MD
Pages 373-381 | Received 27 Jun 2015, Accepted 03 Nov 2015, Published online: 15 Apr 2021

References

  • Weinreb RN, Khaw PT. Primary open‐angle glaucoma. The Lancet 2004; 363 (9422): 1711–1720.
  • Shields MB. Normal‐tension glaucoma: is it different from primary open‐angle glaucoma? Curr Opin Ophthalmol 2008; 19: 85–88.
  • Gutteridge IF. Normal tension glaucoma: diagnostic features and comparisons with primary open angle glaucoma. Clin Exp Optom 2000; 83: 161–172.
  • Sack J. The management of normal tension glaucoma. Clin Exp Optom 2000; 83: 185–189.
  • Martus P, Stroux A, Budde WM et al. Predictive factors for progressive optic nerve damage in various types of chronic open‐angle glaucoma. Am J Ophthalmol 2005; 139: 999–1009.
  • Kitazawa Y, Shirato S, Yamamoto T. Optic disc hemorrhage in low‐tension glaucoma. Ophthalmology 1986; 93: 853–857.
  • Kim DM, Seo JH, Kim SH, et al. Comparison of localized retinal nerve fiber layer defects between a low‐teen intraocular pressure group and a high‐teen intraocular pressure group in normal tension glaucoma patients. J Glaucoma 2007; 16: 293–296.
  • Barkana Y, Anis S, Liebmann J et al. Clinical utility of intraocular pressure monitoring outside of normal office hours in patients with glaucoma. Arch Ophthalmol 2006; 124: 793–797.
  • Kiuchi T, Motoyama Y, Oshika T. Relationship of progression of visual field damage to postural changes in intraocular pressure in patients with normal‐tension glaucoma. Ophthalmology 2006; 113: 2150–2155.
  • Kurita N, Tomidokoro A, Mayama C et al. No apparent association between ocular perfusion pressure and visual field damage in normal‐tension glaucoma patients. Jpn J Ophthalmol 2006; 50: 547–549.
  • Leibovitch I, Kurtz S, Kesler A, et al. C‐reactive protein levels in normal tension glaucoma. J Glaucoma 2005; 14: 384–386.
  • Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science 1991; 254 (5035), 1178–1181.
  • Greenfield DS, Bagga H, Knighton RW. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 2003; 121: 41–46.
  • Ishikawa H, Stein DM, Wollstein G et al. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46: 2012–2017.
  • Ojima T, Tanabe T, Hangai M et al. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn J Ophthalmol 2007; 51: 197–203.
  • Khanal S, Thapa M, Racette L et al. Retinal nerve fiber layer thickness in glaucomatous Nepalese eyes and its relation with visual field sensitivity. J Optom 2014; 7: 217–224.
  • Zeimer R, Asrani S, Zou S, et al. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology 1998; 105: 224–231.
  • Nakatani Y, Higashide T, Ohkubo S et al. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma 2011;20(4), 252–259.
  • Gurses‐ozden R, Teng C, Vessani R et al. Macular and retinal nerve fiber layer thickness measurement reproducibility using optical coherence tomography (OCT‐3). J Glaucoma 2004;13(3), 238–244.
  • Seong M, Sung KR, Choi EH et al. Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal‐tension glaucoma. [Comparative Study]. Invest Ophthalmol Vis Sci 2010; 51: 1446–1452.
  • Thapa M, Khanal S, Shrestha GB, Sharma AK. Retinal nerve fiber layer thickness in a healthy Nepalese population by spectral domain optical coherence tomography. Nepalese Journal of Ophthalmology 2014; 6(2):131–9.
  • Khanal S, Davey PG, Racette L, Thapa M. Intraeye retinal nerve fiber layer and macular thickness asymmetry measurements for the discrimination of primary open‐angle glaucoma and normal tension glaucoma. Journal of Optometry 2015 Dec 1.
  • Hodapp E, Parrish RK II, Anderson DR. Clinical Decisions in Glaucoma. St. Louis: Mosby, 1993.
  • Weijland A, Fankhauser F, Bebie H et al. Automated perimetry. Visual Field Digest. USA: Haag‐Streit publications, 2004.
  • Heidelberg Engineering Academy Quick Guides an Tutorials. Heidelberg; Heidelberg Engineering, Inc; 2015. Available at: http://www.heidelbergengineering.com/us/academy‐education/quick‐guides. [Accessed 27 June 2015].
  • Subbiah S, Sankarnarayanan S, Thomas PA et al. Comparative evaluation of optical coherence tomography in glaucomatous, ocular hypertensive and normal eyes. Indian J Ophthalmol 2007; 55: 283–287.
  • Kass MA, Heuer DK, Higginbotham EJ et al. The ocular hypertensive treatment study. Arch Ophthalmol 2002; 120: 701–713.
  • Savini G, Carbonelli M, Barboni P. Spectral‐domain optical coherence tomography for the diagnosis and follow‐up of glaucoma. Curr Opin Ophthalmol 2011; 22: 115–123.
  • Van buren JM. The Retinal Ganglion Cell Layer. Springfield, Illinois: Charles C. Thomas; 1963.
  • Bowd C, Weinreb RN, Williams JM et al. The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography. Arch Ophthalmol 2000; 118: 22–26.
  • Guedes V, Schuman JS, Hertzmark E et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology. 2003 Jan 31;110(1):177–89.
  • Nakamura H, Hangai M, Mori S et al. Hemispherical focal macular photopic negative response and macular inner retinal thickness in open‐angle glaucoma. Am J Ophthalmol 2011; 151: 494–506.
  • Mok KH, Lee VW, So KF. Retinal nerve fiber loss in high and normal‐tension glaucoma by optical coherence tomography. Optom Vis Sci 2004; 81: 369–372.
  • Konstantakopoulou E, Reeves BC, Fenerty C et al. Retinal nerve fiber layer measures in high‐ and normal‐tension glaucoma. Optom Vis Sci 2008; 85: 538–542.
  • Mori S, Hangai M, Sakamoto A et al. Spectral‐domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J Glaucoma 2010; 19: 528–534.
  • Nakatani Y, Higashide T, Ohkubo S et al. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma 2011; 20: 252–259.
  • Firat PG, Doganay S, Demirel EE et al. Comparison of ganglion cell and retinal nerve fiber layer thickness in primary open‐angle glaucoma and normal tension glaucoma with spectral‐domain OCT. Graefe's Arch Clin Exp Ophthalmol 2013; 251: 831–838.
  • Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol 1981; 99: 137–143.
  • Wollstein G, Schuman JS, Price LL et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 2004; 138: 218–225.
  • Medeiros FA, Zangwill LM, Bowd C et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 2005; 139: 44–55.
  • Leung CK, Chan WM, Yung WH et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 2005; 112: 391–400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.