191
Views
23
CrossRef citations to date
0
Altmetric
Invited Review

Disturbing the balance: effect of contact lens use on the ocular proteome and microbiome

, DPhil FIBMS, , PhD FAAO FBCLS & , BSc (Hons)
Pages 459-472 | Received 18 Mar 2017, Accepted 05 Jun 2017, Published online: 15 Apr 2021

REFERENCES

  • Bron AJ, Tripathi RC, Tripathi BJ, Wolff E. Wolff's Anatomy of the Eye and Orbit, 8th edn. London: Chapman and Hall, 1997.
  • Bukhari AA, Basheer NA, Joharjy HI. Age, gender, and interracial variability of normal lacrimal gland volume using MRI. Ophthal Plast Reconstr Surg 2014; 30: 388–391.
  • Holly FJ. Formation and rupture of the tear film. Exp Eye Res 1973; 15: 515–525.
  • Tiffany JM. Composition and biophysical properties of the tear film: knowledge and uncertainty. Adv Exp Med Biol 1994; 350: 231–238.
  • Bron AJ, Tiffany JM. The meibomian glands and tear film lipids. Structure, function, and control. Adv Exp Med Biol 1998; 438: 281–295.
  • Bron AJ, Tiffany JM, Gouveia SM, Yokoi N, Voon LW. Functional aspects of the tear film lipid layer. Exp Eye Res 2004; 78: 347–360.
  • Mcculley JP, Shine WE. Meibomian gland function and the tear lipid layer. Ocul Surf 2003; 1: 97–106.
  • Sack RA, Nunes I, Beaton A, Morris C. Host‐defense mechanism of the ocular surfaces. Biosci Rep 2001; 21: 463–480.
  • de Souza GA, Godoy LM, Mann M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol 2006; 7: R72.
  • Mcdermott AM. Antimicrobial compounds in tears. Exp Eye Res 2013; 117: 53–61.
  • Lam TC, Chun RK, Li KK, To CH. Application of proteomic technology in eye research: a mini review. Clin Exp Optom 2008; 91: 23–33.
  • Boehm N, Funke S, Wiegand M, Wehrwein N, Pfeiffer N, Grus FH. Alterations in the tear proteome of dry eye patients: a matter of the clinical phenotype. Invest Ophthalmol Vis Sci 2013; 54: 2385–2392.
  • Tezel G, Yang X, Cai J. Proteomic identification of oxidatively modified retinal proteins in a chronic pressure‐induced rat model of glaucoma. Invest Ophthalmol Vis Sci 2005; 46: 3177–3187.
  • Grus FH, Boehm N, Beck S, Schlich M, Lossbrandt U, Pfeiffer N. Autoantibody profiles in tear fluid as a diagnostic tool in glaucoma. Invest Ophthalmol Vis Sci 2010; 51: 6110.
  • Mantelli F, Argueso P. Functions of ocular surface mucins in health and disease. Curr Opin Allergy Clin Immunol 2008; 8: 477–483.
  • Jumblatt MM, Mckenzie RW, Jumblatt JE. MUC5AC mucin is a component of the human precorneal tear film. Invest Ophthalmol Vis Sci 1999; 40: 43–49.
  • Davidson HJ, Kuonen VJ. The tear film and ocular mucins. Vet Ophthalmol 2004; 7: 71–77.
  • Gipson IK, Argueso P. Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol 2003; 231: 1–49.
  • Holly FJ, Lemp MA. Tear physiology and dry eyes. Surv Ophthalmol 1977; 22: 69–87.
  • Prydal JI, Artal P, Woon H, Campbell FW. Study of human precorneal tear film thickness and structure using laser interferometry. Invest Ophthalmol Vis Sci 1992; 33: 2006–2011.
  • King‐smith PE, Fink BA, Hill RM, Koelling KW, Tiffany JM. The thickness of the tear film. Curr Eye Res 2004; 29: 357–368.
  • Butovich IA, Millar TJ, Ham BM. Understanding and analyzing meibomian lipids: a review. Curr Eye Res 2008; 33: 405–420.
  • Subbaraman LN, Borazjani R, Zhu H, Zhao Z, Jones L, Willcox MDP. Influence of protein deposition on bacterial adhesion to contact lenses. Optom Vis Sci 2011; 88: 959–966.
  • Farnaud S, Evans RW. Lactoferrin: a multifunctional protein with antimicrobial properties. Mol Immunol 2003; 40: 395–405.
  • Kijlstra A. The role of lactoferrin in the nonspecific immune response on the ocular surface. Reg Immunol 1990; 3: 193–197.
  • Vorland LH. Lactoferrin: a multifunctional glycoprotein. APMIS 1999; 107: 971–981.
  • Cumberbatch M, Dearman RJ, Uribe‐luna S et al. Regulation of epidermal Langerhans cell migration by lactoferrin. Immunology 2000; 100: 21–28.
  • Groenink J, Walgreen‐weterings E, Van't hof W, Veerman EC, Nieuw amerongen AV. Cationic amphipathic peptides, derived from bovine and human lactoferrins, with antimicrobial activity against oral pathogens. FEMS Microbiol Lett 1999; 179: 217–222.
  • Fluckinger M, Haas H, Merschak P, Glasgow BJ, Redl B. Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrob Agents Chemother 2004; 48: 3367–3372.
  • Van't hof W, Blankenvoorde MF, Veerman EC, Amerongen AV. The salivary lipocalin von Ebner's gland protein is a cysteine proteinase inhibitor. J Biol Chem 1997; 272: 1837–1841.
  • Knop E, Knop N. The role of eye‐associated lymphoid tissue in corneal immune protection. J Anat 2005; 206: 271–285.
  • Mantis NJ, Rol N, Corthésy B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 2011; 4: 603–611.
  • Lan JX, Willcox MD, Jackson GD, Thakur A. Effect of tear secretory IgA on chemotaxis of polymorphonuclear leucocytes. Aust NZ J Ophthalmol 1998; 26 Suppl 1: S36–39.
  • Willcox MD, Morris CA, Thakur A, Sack RA, Wickson J, Boey W. Complement and complement regulatory proteins in human tears. Invest Ophthalmol Vis Sci 1997; 38: 1–8.
  • Hara T, Kuriyama S, Kiyohara H, Nagase Y, Matsumoto M, Seya T. Soluble forms of membrane cofactor protein (CD46, MCP) are present in plasma, tears, and seminal fluid in normal subjects. Clin Exp Immunol 1992; 89: 490–494.
  • Cocuzzi E, Szczotka LB, Brodbeck WG, Bardenstein DS, Wei T, Medof ME. Tears contain the complement regulator CD59 as well as decay‐accelerating factor (DAF). Clin Exp Immunol 2001; 123: 188–195.
  • Buckland AG, Heeley EL, Wilton DC. Bacterial cell membrane hydrolysis by secreted phospholipases A(2): a major physiological role of human group IIa sPLA(2) involving both bacterial cell wall penetration and interfacial catalysis. Biochim Biophys Acta 2000; 1484: 195–206.
  • Sallenave JM. Secretory leukocyte protease inhibitor and elafin/trappin‐2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol 2010; 42: 635–643.
  • Sathe S, Sakata M, Beaton AR, Sack RA. Identification, origins and the diurnal role of the principal serine protease inhibitors in human tear fluid. Curr Eye Res 1998; 17: 348–362.
  • Peuravuori H, Aho VV, Aho HJ, Collan Y, Saari KM. Bactericidal/permeability‐increasing protein in lacrimal gland and in tears of healthy subjects. Graefes Arch Clin Exp Ophthalmol 2006; 244: 143–148.
  • Bukharin OV, Suleimanov KG. The role of the thrombocytic cationic protein (beta‐lysin) in anti‐infectious protection. Zh Mikrobiol Epidemiol Immunobiol 1997: 3–6.
  • Fleiszig SM, Zaidi TS, Ramphal R, Pier GB. Modulation of Pseudomonas aeruginosa adherence to the corneal surface by mucus. Infect Immun 1994; 62: 1799–1804.
  • Govindarajan B, Gipson IK. Membrane‐tethered mucins have multiple functions on the ocular surface. Exp Eye Res 2010; 90: 655–663.
  • Kardon R, Price RE, Julian J et al. Bacterial conjunctivitis in Muc1 null mice. Invest Ophthalmol Vis Sci 1999; 40: 1328–1335.
  • Danjo Y, Hazlett LD, Gipson IK. C57BL/6 mice lacking Muc1 show no ocular surface phenotype. Invest Ophthalmol Vis Sci 2000; 41: 4080–4084.
  • Awasthi S. Surfactant protein (SP)‐A and SP‐D as antimicrobial and immunotherapeutic agents. Recent Pat Antiinfect Drug Discov 2010; 5: 115–123.
  • Ni M, Evans DJ, Hawgood S, Anders EM, Sack RA, Fleiszig SM. Surfactant protein D is present in human tear fluid and the cornea and inhibits epithelial cell invasion by Pseudomonas aeruginosa. Infect Immun 2005; 73: 2147–2156.
  • Alarcon I, Tam C, Mun JJ, Ledue J, Evans DJ, Fleiszig SM. Factors impacting corneal epithelial barrier function against Pseudomonas aeruginosa traversal. Invest Ophthalmol Vis Sci 2011; 52: 1368–1377.
  • Choi KY, Chow LN, Mookherjee N. Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate Immun 2012; 4: 361–370.
  • Azkargorta M, Soria J, Ojeda C et al. Human basal tear peptidome characterization by CID, HCD, and ETD followed by in silico and in vitro analyses for antimicrobial peptide identification. J Proteome Res 2015; 14: 2649–2658.
  • Haynes RJ, Tighe PJ, Dua HS. Antimicrobial defensin peptides of the human ocular surface. Br J Ophthalmol 1999; 83: 737–741.
  • Kolar SS, Mcdermott AM. Role of host‐defence peptides in eye diseases. Cell Mol Life Sci 2011; 68: 2201–2213.
  • Zhou L, Huang LQ, Beuerman RW et al. Proteomic analysis of human tears: defensin expression after ocular surface surgery. J Proteome Res 2004; 3: 410–416.
  • Steele PS, Jumblatt MM, Smith NB, Pierce WM. Detection of histatin 5 in normal human Schirmer strip samples by mass spectroscopy. Invest Ophthalmol Vis Sci 2002; 43: 98.
  • Garreis F, Gottschalt M, Schlorf T et al. Expression and regulation of antimicrobial peptide psoriasin (S100A7) at the ocular surface and in the lacrimal apparatus. Invest Ophthalmol Vis Sci 2011; 52: 4914–4922.
  • Mckown RL, Coleman EV, Crawley EE et al. Antimicrobial activity in recombinant variants of prosecretory mitogen lacritin. Invest Ophthalmol Vis Sci 2008; 49: 5287.
  • Hosseini A, Jr FAL, Samudre SS et al. Lacritin, a novel tear glycoprotein, is an effective topical antimicrobial agent in an animal model. Invest Ophthalmol Vis Sci 2012; 53: 6266.
  • Shirane J, Nakayama T, Nagakubo D et al. Corneal epithelial cells and stromal keratocytes efficiently produce CC chemokine‐ligand 20 (CCL20) and attract cells expressing its receptor CCR6 in mouse herpetic stromal keratitis. Curr Eye Res 2004; 28: 297–306.
  • Huang LC, Jean D, Proske RJ, Reins RY, Mcdermott AM. Ocular surface expression and in vitro activity of antimicrobial peptides. Curr Eye Res 2007; 32: 595–609.
  • Tam C, Mun JJ, Evans DJ, Fleiszig SM. Cytokeratins mediate epithelial innate defense through their antimicrobial properties. J Clin Invest 2012; 122: 3665–3677.
  • Zhou L, Zhao SZ, Koh SK et al. In‐depth analysis of the human tear proteome. J Proteomics 2012; 75: 3877–3885.
  • Mcnamara NA, Chan JS, Han SC, Polse KA, Mckenney CD. Effects of hypoxia on corneal epithelial permeability. Am J Ophthalmol 1999; 127: 153–157.
  • Thakur A, Willcox MD, Stapleton F. The proinflammatory cytokines and arachidonic acid metabolites in human overnight tears: homeostatic mechanisms. J Clin Immunol 1998; 18: 61–70.
  • Sack RA, Beaton A, Sathe S, Morris C, Willcox M, Bogart B. Towards a closed eye model of the pre‐ocular tear layer. Prog Retin Eye Res 2000; 19: 649–668.
  • Sack RA, Tan KO, Tan A. Diurnal tear cycle: evidence for a nocturnal inflammatory constitutive tear fluid. Invest Ophthalmol Vis Sci 1992; 33: 626–640.
  • Ramachandran L, Sharma S, Sankaridurg PR et al. Examination of the conjunctival microbiota after 8 hours of eye closure. CLAO J 1995; 21: 195–199.
  • Williams DL, Risse B, Kim S et al. Plasminogen activator inhibitor type 2 in human corneal epithelium. Invest Ophthalmol Vis Sci 1999; 40: 1669–1675.
  • Brubaker RF, Bourne WM, Bachman LA, Mclaren JW. Ascorbic acid content of human corneal epithelium. Invest Ophthalmol Vis Sci 2000; 41: 1681–1683.
  • Fedukowicz helena B, Stenson S. External Infections of the Eye, 3rd edn. Norwalk: Appleton‐Century‐Crofts, 1985.
  • Rocha G, Deschenes J, Rowsey JJ. The immunology of corneal graft rejection. Crit Rev Immunol 1998; 18: 305–325.
  • Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 2003; 3: 879–889.
  • Shaharuddin B, Ahmad S, Meeson A, Ali S. Concise review: immunological properties of ocular surface and importance of limbal stem cells for transplantation. Stem Cells Transl Med 2013; 2: 614–624.
  • Azar DT. Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 2006; 104: 264–302.
  • Niederkorn JY. Cornea: window to ocular immunology. Curr Immunol Rev 2011; 7: 328–335.
  • Polisetti N, Agarwal P, Khan I, Kondaiah P, Sangwan VS, Vemuganti GK. Gene expression profile of epithelial cells and mesenchymal cells derived from limbal explant culture. Mol Vis 2010; 16: 1227–1240.
  • Esteban A. A neurophysiological approach to brainstem reflexes. Blink reflex. Neurophysiol Clin 1999; 29: 7–38.
  • Turnbaugh PJ, Ley RE, Hamady M, Fraser‐liggett C, Knight R, Gordon JI. The Human Microbiome Project: exploring the microbial part of ourselves in a changing world. Nature 2007; 449: 804–810.
  • Gevers D, Knight R, Petrosino JF et al. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol 2012; 10: e1001377.
  • Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011; 474: 307–317.
  • Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol 2011; 7: 569–578.
  • Graham JE, Moore JE, Jiru X et al. Ocular pathogen or commensal: a PCR‐based study of surface bacterial flora in normal and dry eyes. Invest Ophthalmol Vis Sci 2007; 48: 5616–5623.
  • Dong Q, Brulc JM, Iovieno A et al. Diversity of bacteria at healthy human conjunctiva. Invest Ophthalmol Vis Sci 2011; 52: 5408–5413.
  • Huang Y, Yang B, Li W. Defining the normal core microbiome of conjunctival microbial communities. Clin Microbiol Infect 2016; 22: 643.e647–643.e612.
  • Doan T, Akileswaran L, Andersen D et al. Paucibacterial microbiome and resident DNA virome of the healthy conjunctiva. Invest Ophthalmol Vis Sci 2016; 57: 5116–5126.
  • Schabereiter‐gurtner C, Maca S, Rölleke S et al. 16S rDNA‐Based identification of bacteria from conjunctival swabs by PCR and DGGE fingerprinting. Invest Ophthalmol Vis Sci 2001; 42: 1164–1171.
  • Kirkwood BJ. Normal flora of the external eye. Insight 2007; 32: 12–13.
  • Burns BP. Indigenous flora of the lids and conjunctiva. In: Tasman W, Jaeger E, eds. Duan's Ophthalmology [CD‐ROM]. Philadelphia: Lippincott, 1998.
  • Osato MS. Normal ocular flora. In: Pepose JS, Holland GN, Wilhelmus KR, eds. Ocular Infection and Immunity, 1st edn. St Louise: Mosby, 1996. pp 191–199.
  • Keilty RA. The bacterial flora of the normal conjunctiva with comparative nasal culture study. Am J Ophthalmol 1930; 13: 876–879.
  • Abelson MB, Lane K, Slocum C. The secrets of ocular microbiomes. 2015. [Cited 9 Mar 2017.] Available at: https://www.reviewofophthalmology.com/article/the‐secrets‐of‐ocular‐microbiomes
  • Huse SM, Ye Y, Zhou Y, Fodor AA. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One 2012; 7: e34242.
  • Grice EA, Kong HH, Renaud G et al. A diversity profile of the human skin microbiota. Genome Res 2008; 18: 1043–1050.
  • Moeller CT, Branco BC, Yu MC, Farah ME, Santos MA, Hofling‐lima AL. Evaluation of normal ocular bacterial flora with two different culture media. Can J Ophthalmol 2005; 40: 448–453.
  • Berry M, Harris A, Lumb R, Powell K. Commensal ocular bacteria degrade mucins. Br J Ophthalmol 2002; 86: 1412–1416.
  • Sun W, Dong L, Kaneyama K, Takegami T, Segami N. Bacterial diversity in synovial fluids of patients with TMD determined by cloning and sequencing analysis of the 16S ribosomal RNA gene. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 105: 566–571.
  • Fritsche TR, Gautom RK, Seyedirashti S, Bergeron DL, Lindquist TD. Occurrence of bacterial endosymbionts in Acanthamoeba spp. isolated from corneal and environmental specimens and contact lenses. J Clin Microbiol 1993; 31: 1122–1126.
  • Thomas V, Herrera‐rimann K, Blanc DS, Greub G. Biodiversity of amoebae and amoeba‐resisting bacteria in a hospital water network. Appl Environ Microbiol 2006; 72: 2428–2438.
  • Zhou Y, Holland MJ, Makalo P et al. The conjunctival microbiome in health and trachomatous disease: a case control study. Genome Med 2014; 6: 99.
  • Sharma PD, Sharma N, Gupta RK, Singh P. Aerobic bacterial flora of the normal conjunctiva at high altitude area of Shimla Hills in India: a hospital based study. Int J Ophthalmol 2013; 6: 723–726.
  • Willcox MDP. Characterization of the normal microbiota of the ocular surface. Exp Eye Res 2013; 117: 99–105.
  • Zegans ME, Van gelder RN. Considerations in understanding the ocular surface microbiome. Am J Ophthalmol 2014; 158: 420–422.
  • Gritz DC, Scott TJ, Sedo SF, Cevallos AV, Margolis TP, Whitcher JP. Ocular flora of patients with AIDS compared with those of HIV‐negative patients. Cornea 1997; 16: 400–405.
  • van der Meulen IJ, van Rooij J, Nieuwendaal CP, Van cleijnenbreugel H, Geerards AJ, Remeijer L. Age‐related risk factors, culture outcomes, and prognosis in patients admitted with infectious keratitis to two Dutch tertiary referral centers. Cornea 2008; 27: 539–544.
  • Miller D, Iovieno A. The role of microbial flora on the ocular surface. Curr Opin Allergy Clin Immunol 2009; 9: 466–470.
  • Ueta M. Innate immunity of the ocular surface and ocular surface inflammatory disorders. Cornea 2008; 27 Suppl 1: S31–40.
  • Pearlman E, Johnson A, Adhikary G et al. Toll‐like receptors at the ocular surface. Ocul Surf 2008; 6: 108–116.
  • Kaufman HE, Azcuy AM, Varnell ED, Sloop GD, Thompson HW, Hill JM. HSV‐1 DNA in tears and saliva of normal adults. Invest Ophthalmol Vis Sci 2005; 46: 241–247.
  • Su CS, Bowden S, Fong LP, Taylor HR. Detection of hepatitis B virus DNA in tears by polymerase chain reaction. Arch Ophthalmol 1994; 112: 621–625.
  • Wu T, Mitchell B, Carothers T et al. Molecular analysis of the pediatric ocular surface for fungi. Curr Eye Res 2003; 26: 33–36.
  • Barr JT. 20 years of contact lenses. 2006. [Cited 9 Mar 2017.] Available at: http://www.clspectrum.com/issues/2006/june‐2006/20‐years‐of‐contact‐lenses
  • Cope JR, Collier SA, Rao MM et al. Contact lens wearer demographics and risk behaviors for contact lens‐related eye infections—United States, 2014. MMWR Morb Mortal Wkly Rep 2015; 64: 865–870.
  • Boost MV, Cho P. Microbial flora of tears of orthokeratology patients, and microbial contamination of contact lenses and contact lens accessories. Optom Vis Sci 2005; 82: 451–458.
  • Yung MS, Boost M, Cho P, Yap M. Microbial contamination of contact lenses and lens care accessories of soft contact lens wearers (university students) in Hong Kong. Ophthalmic Physiol Opt 2007; 27: 11–21.
  • Efron N. Contact Lens Complications, 3rd ed. Edinburgh: Saunders, 2012.
  • Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol 2009; 93: 1181–1185.
  • Cho P, Cheung SW. Retardation of myopia in orthokeratology (ROMIO) study: a 2‐year randomized clinical trial. Invest Ophthalmol Vis Sci 2012; 53: 7077–7085.
  • Swarbrick HA, Alharbi A, Watt K, Lum E, Kang P. Myopia control during orthokeratology lens wear in children using a novel study design. Ophthalmology 2015; 122: 620–630.
  • Gonzalez‐meijome JM, Carracedo G, Lopes‐ferreira D, Faria‐ribeiro MA, Peixoto‐de‐matos SC, Queiros A. Stabilization in early adult‐onset myopia with corneal refractive therapy. Cont Lens Anterior Eye 2016; 39: 72–77.
  • Watt KG, Swarbrick HA. Trends in microbial keratitis associated with orthokeratology. Eye Contact Lens 2007; 33: 373–377.
  • Santodomingo‐rubido J, Villa‐collar C, Gilmartin B, Gutierrez‐ortega R. Orthokeratology vs. spectacles: adverse events and discontinuations. Optom Vis Sci 2012; 89: 1133–1139.
  • Bullimore MA, Sinnott LT, Jones‐jordan LA. The risk of microbial keratitis with overnight corneal reshaping lenses. Optom Vis Sci 2013; 90: 937–944.
  • Mann A, Tighe B. Contact lens interactions with the tear film. Exp Eye Res 2013; 117: 88–98.
  • Dogru M, Ward SK, Wakamatsu T et al. The effects of 2 week senofilcon‐A silicone hydrogel contact lens daily wear on tear functions and ocular surface health status. Cont Lens Anterior Eye 2011; 34: 77–82.
  • Kieval JZ, Karp CL, Abou shousha M et al. Ultra‐high resolution optical coherence tomography for differentiation of ocular surface squamous neoplasia and pterygia. Ophthalmology 2012; 119: 481–486.
  • Gray TB, Cursons RT, Sherwan JF, Rose PR. Acanthamoeba, bacterial, and fungal contamination of contact lens storage cases. Br J Ophthalmol 1995; 79: 601–605.
  • Klassen‐fischer M, Neafie RC. Ocular infection worldwide. In: Laver NV, Specht CS, eds. The Infected Eye Clinical Practice and Pathological Principles, 1st edn. Switzerland: Springer International Publishing, 2016. pp 37–55.
  • Stapleton F, Keay L, Edwards K et al. The incidence of contact lens‐related microbial keratitis in Australia. Ophthalmology 2008; 115: 1655–1662.
  • Robertson DM. The effects of silicone hydrogel lens wear on the corneal epithelium and risk for microbial keratitis. Eye Contact Lens 2013; 39: 67–72.
  • Patel A, Hammersmith K. Contact lens‐related microbial keratitis: recent outbreaks. Curr Opin Ophthalmol 2008; 19: 302–306.
  • Yoder JS, Verani J, Heidman N et al. Acanthamoeba keratitis: the persistence of cases following a multistate outbreak. Ophthalmic Epidemiol 2012; 19: 221–225.
  • Evans DJ, Fleiszig SM. Why does the healthy cornea resist Pseudomonas aeruginosa infection? Am J Ophthalmol 2013; 155: 961–970.e962.
  • Begley CG, Caffery B, Nichols KK, Chalmers R. Responses of contact lens wearers to a dry eye survey. Optom Vis Sci 2000; 77: 40–46.
  • Guillon M, Maissa C. Dry eye symptomatology of soft contact lens wearers and nonwearers. Optom Vis Sci 2005; 82: 829–834.
  • Jones L, Brennan NA, Gonzalez‐meijome J et al. The TFOS international workshop on contact lens discomfort: report of the contact lens materials, design, and care subcommittee. Invest Ophthalmol Vis Sci 2013; 54: Tfos37‐70.
  • Young G. Evaluation of soft contact lens fitting characteristics. Optom Vis Sci 1996; 73: 247–254.
  • Lum E, Golebiowski B, Gunn R, Babhoota M, Swarbrick H. Corneal sensitivity with contact lenses of different mechanical properties. Optom Vis Sci 2013; 90: 954–960.
  • Brennan NA, Efron N. Symptomatology of HEMA contact lens wear. Optom Vis Sci 1989; 66: 834–838.
  • Situ P, Simpson TL, Jones LW, Fonn D. Effects of silicone hydrogel contact lens wear on ocular surface sensitivity to tactile, pneumatic mechanical, and chemical stimulation. Invest Ophthalmol Vis Sci 2010; 51: 6111–6117.
  • Morgan PB, Efron N. In vivo dehydration of silicone hydrogel contact lenses. Eye Contact Lens 2003; 29: 173–176.
  • Gonzalez‐garcia MJ, Gonzalez‐saiz A, de la Fuente B et al. Exposure to a controlled adverse environment impairs the ocular surface of subjects with minimally symptomatic dry eye. Invest Ophthalmol Vis Sci 2007; 48: 4026–4032.
  • Martin‐montanez V, Enriquez‐de‐salamanca A, Lopez‐de la rosa A et al. Effect of environmental conditions on the concentration of tear inflammatory mediators during contact lens wear. Cornea 2016; 35: 1192–1198.
  • Martin DK. Osmolality of the tear fluid in the contralateral eye during monocular contact lens wear. Acta Ophthalmol (Copenh) 1987; 65: 551–555.
  • Benjamin WJ, Armitage BS, Woloschak MJ, Hill RM. Nanoliter tracking of the tears. J Am Optom Assoc 1983; 54: 243–244.
  • Nieto‐bona A, Nombela‐palomo M, Felipe‐marquez G, Teus MA. Tear film osmolarity in response to long‐term orthokeratology treatment. Eye Contact Lens 2016; doi: 10.1097/ICL.0000000000000347.
  • Iskeleli G, Karakoc Y, Aydin O, Yetik H, Uslu H, Kizilkaya M. Comparison of tear‐film osmolarity in different types of contact lenses. CLAO J 2002; 28: 174–176.
  • Stahl U, Willcox M, Stapleton F. Osmolality and tear film dynamics. Clin Exp Optom 2012; 95: 3–11.
  • Ladage PM, Ren DH, Petroll WM, Jester JV, Bergmanson JP, Cavanagh HD. Effects of eyelid closure and disposable and silicone hydrogel extended contact lens wear on rabbit corneal epithelial proliferation. Invest Ophthalmol Vis Sci 2003; 44: 1843–1849.
  • Fullard RJ, Snyder C. Protein levels in nonstimulated and stimulated tears of normal human subjects. Invest Ophthalmol Vis Sci 1990; 31: 1119–1126.
  • Choy CK, Cho P, Benzie IF, Ng V. Effect of one overnight wear of orthokeratology lenses on tear composition. Optom Vis Sci 2004; 81: 414–420.
  • Ren DH, Yamamoto K, Ladage PM et al. Adaptive effects of 30‐night wear of hyper‐O2 transmissible contact lenses on bacterial binding and corneal epithelium: a 1‐year clinical trial. Ophthalmology 2002; 109: 27–39.
  • Perez JG, Meijome JM, Jalbert I, Sweeney DF, Erickson P. Corneal epithelial thinning profile induced by long‐term wear of hydrogel lenses. Cornea 2003; 22: 304–307.
  • Ladage PM, Yamamoto K, Ren DH et al. Effects of rigid and soft contact lens daily wear on corneal epithelium, tear lactate dehydrogenase, and bacterial binding to exfoliated epithelial cells. Ophthalmology 2001; 108: 1279–1288.
  • Hara Y, Shiraishi A, Ohashi Y. Hypoxia‐altered signaling pathways of toll‐like receptor 4 (TLR4) in human corneal epithelial cells. Mol Vis 2009; 15: 2515–2520.
  • Nichols KK, Mitchell GL, Simon KM, Chivers DA, Edrington TB. Corneal staining in hydrogel lens wearers. Optom Vis Sci 2002; 79: 20–30.
  • Boswall GJ, Ehlers WH, Luistro A, Worrall M, Donshik PC. A comparison of conventional and disposable extended wear contact lenses. CLAO J 1993; 19: 158–165.
  • Begley CG, Barr JT, Edrington TB, Long WD, Mckenney CD, Chalmers RL. Characteristics of corneal staining in hydrogel contact lens wearers. Optom Vis Sci 1996; 73: 193–200.
  • Cho P, Lui T, Kee C. Soft contact lens care systems and corneal staining in Hong Kong‐Chinese. Contact Lens Anterior Eye 1998; 21: 47–53.
  • Josephson JE, Caffery BE. Corneal staining characteristics after sequential instillations of fluorescein. Optom Vis Sci 1992; 69: 570–573.
  • Schwallie JD, Mckenney CD, Long WD, Jr, Mcneil A. Corneal staining patterns in normal non‐contact lens wearers. Optom Vis Sci 1997; 74: 92–98.
  • Dundas M, Walker A, Woods RL. Clinical grading of corneal staining of non‐contact lens wearers. Ophthalmic Physiol Opt 2001; 21: 30–35.
  • Sack RA, Sathe S, Beaton A. Tear turnover and immune and inflammatory processes in the open‐eye and closed‐eye environments: relationship to extended wear contact lens use. Eye Contact Lens 2003; 29: S80–82.
  • Kallinikos P, Morgan P, Efron N. Assessment of stromal keratocytes and tear film inflammatory mediators during extended wear of contact lenses. Cornea 2006; 25: 1–10.
  • Lema I, Duran JA, Ruiz C, Diez‐feijoo E, Acera A, Merayo J. Inflammatory response to contact lenses in patients with keratoconus compared with myopic subjects. Cornea 2008; 27: 758–763.
  • Gonzalez‐perez J, Villa‐collar C, Sobrino moreiras T et al. Tear film inflammatory mediators during continuous wear of contact lenses and corneal refractive therapy. Br J Ophthalmol 2012; 96: 1092–1098.
  • Lakhundi S, Siddiqui R, Khan NA. Pathogenesis of microbial keratitis. Microb Pathog 2017; 104: 97–109.
  • Omali NB, Subbaraman LN, Coles‐brennan C, Fadli Z, Jones LW. Biological and clinical implications of lysozyme deposition on soft contact lenses. Optom Vis Sci 2015; 92: 750–757.
  • Ng A, Heynen M, Luensmann D, Subbaraman LN, Jones L. Impact of tear film components on the conformational state of lysozyme deposited on contact lenses. J Biomed Mater Res B Appl Biomater 2013; 101: 1172–1181.
  • Subbaraman LN, Glasier MA, Senchyna M, Sheardown H, Jones L. Kinetics of in vitro lysozyme deposition on silicone hydrogel, PMMA, and FDA groups I, II, and IV contact lens materials. Curr Eye Res 2006; 31: 787–796.
  • Pucker AD, Thangavelu M, Nichols JJ. In vitro lipid deposition on hydrogel and silicone hydrogel contact lenses. Invest Ophthalmol Vis Sci 2010; 51: 6334–6340.
  • Boone A, Heynen M, Joyce E, Varikooty J, Jones L. Ex vivo protein deposition on bi‐weekly silicone hydrogel contact lenses. Optom Vis Sci 2009; 86: 1241–1249.
  • Ng A, Heynen M, Luensmann D, Jones L. Impact of tear film components on lysozyme deposition to contact lenses. Optom Vis Sci 2012; 89: 392–400.
  • Babaei omali N, Heynen M, Subbaraman LN et al. Impact of lens care solutions on protein deposition on soft contact lenses. Optom Vis Sci 2016; 93: 963–972.
  • Sankaridurg PR, Sharma S, Willcox M et al. Bacterial colonization of disposable soft contact lenses is greater during corneal infiltrative events than during asymptomatic extended lens wear. J Clin Microbiol 2000; 38: 4420–4424.
  • Willcox MD, Harmis N, Cowell, Williams T, Holden. Bacterial interactions with contact lenses; effects of lens material, lens wear and microbial physiology. Biomaterials 2001; 22: 3235–3247.
  • Baguet J, Sommer F, Claudon‐eyl V, Duc TM. Characterization of lacrymal component accumulation on worn soft contact lens surfaces by atomic force microscopy. Biomaterials 1995; 16: 3–9.
  • Kidane A, Szabocsik JM, Park K. Accelerated study on lysozyme deposition on poly(HEMA) contact lenses. Biomaterials 1998; 19: 2051–2055.
  • Thakur A, Chauhan A, Willcox MD. Effect of lysozyme on adhesion and toxin release by Staphylococcus aureus. Aust N Z J Ophthalmol 1999; 27: 224–227.
  • Zhang S, Borazjani RN, Salamone JC, Ahearn DG, Crow SA, Jr., Pierce GE. In vitro deposition of lysozyme on etafilcon A and balafilcon A hydrogel contact lenses: effects on adhesion and survival of Pseudomonas aeruginosa and Staphylococcus aureus. Contact Lens Anterior Eye 2005; 28: 113–119.
  • Williams TJ, Schneider RP, Willcox MD. The effect of protein‐coated contact lenses on the adhesion and viability of gram negative bacteria. Curr Eye Res 2003; 27: 227–235.
  • Omali BN, Zhu PH, Zhao PZ, Willcox MDP. Protein deposition and its effect on bacterial adhesion to contact lenses. Optom Vis Sci 2013; 90: 557–564.
  • Subbaraman LN, Glasier MA, Varikooty J, Srinivasan S, Jones L. Protein deposition and clinical symptoms in daily wear of etafilcon lenses. Optom Vis Sci 2012; 89: 1450–1459.
  • Dutta D, Cole N, Willcox M. Factors influencing bacterial adhesion to contact lenses. Mol Vis 2012; 18: 14–21.
  • Vijay AK, Zhu H, Ozkan J et al. Bacterial adhesion to unworn and worn silicone hydrogel lenses. Optom Vis Sci 2012; 89: 1095–1106.
  • Richard NR, Anderson JA, Tasevska ZG, Binder PS. Evaluation of tear protein deposits on contact lenses from patients with and without giant papillary conjunctivitis. CLAO J 1992; 18: 143–147.
  • Jones L, Mann A, Evans K, Franklin V, Tighe B. An in vivo comparison of the kinetics of protein and lipid deposition on group II and group IV frequent‐replacement contact lenses. Optom Vis Sci 2000; 77: 503–510.
  • Subbaraman LN, Glasier MA, Senchyna M, Jones L. Stabilization of lysozyme mass extracted from lotrafilcon silicone hydrogel contact lenses. Optom Vis Sci 2005; 82: 209–214.
  • Kingshott P, St john HA, Griesser HJ. Direct detection of proteins adsorbed on synthetic materials by matrix‐assisted laser desorption ionization‐mass spectrometry. Anal Biochem 1999; 273: 156–162.
  • Kingshott P, St john HA, Chatelier RC, Griesser HJ. Matrix‐assisted laser desorption ionization mass spectrometry detection of proteins adsorbed in vivo onto contact lenses. J Biomed Mater Res 2000; 49: 36–42.
  • Markoulli M, Papas E, Cole N, Holden B. Differential gel electrophoresis of the tear proteome. Optom Vis Sci 2012; 89: E875–883.
  • Yamada M, Mochizuki H, Kawashima M, Hata S. Phospholipids and their degrading enzyme in the tears of soft contact lens wearers. Cornea 2006; 25: S68–72.
  • Mann AM, Tighe BJ. Tear analysis and lens‐tear interactions. Part I. Protein fingerprinting with microfluidic technology. Contact Lens Anterior Eye 2007; 30: 163–173.
  • Markoulli M, Papas E, Cole N, Holden B. Effect of contact lens wear on the diurnal profile of matrix metalloproteinase 9 in tears. Optom Vis Sci 2013; 90: 419–429.
  • Tighe BJ. A decade of silicone hydrogel development: surface properties, mechanical properties, and ocular compatibility. Eye Contact Lens 2013; 39: 4–12.
  • Efron N. Is contact lens wear inflammatory? Br J Ophthalmol 2012; 96: 1447–1448.
  • Acera A, Vecino E, Rodriguez‐agirretxe I et al. Changes in tear protein profile in keratoconus disease. Eye (Lond) 2011; 25: 1225–1233.
  • Nichols JJ, Green‐church KB. Mass spectrometry‐based proteomic analyses in contact lens‐related dry eye. Cornea 2009; 28: 1109–1117.
  • Runstrom G, Mann A, Tighe B. The fall and rise of tear albumin levels: a multifactorial phenomenon. Ocul Surf 2013; 11: 165–180.
  • Thakur A, Willcox MD. Cytokine and lipid inflammatory mediator profile of human tears during contact lens associated inflammatory diseases. Exp Eye Res 1998; 67: 9–19.
  • Willcox M, Diec J, Zhao Z, Naduvilath TJ, de la Jara PL. Inflammatory mediators in tears and contact lens induced ocular discomfort. Contact Lens Anterior Eye 2012; 35 Suppl 1: e35.
  • Tsai PS, Evans JE, Green KM et al. Proteomic analysis of human meibomian gland secretions. Br J Ophthalmol 2006; 90: 372–377.
  • Green‐church KB, Nichols JJ. Mass spectrometry‐based proteomic analyses of contact lens deposition. Mol Vis 2008; 14: 291–297.
  • Karnati R, Laurie DE, Laurie GW. Lacritin and the tear proteome as natural replacement therapy for dry eye. Exp Eye Res 2013; 117: 39–52.
  • Glasson M, Stapleton F, Willcox M. Lipid, lipase and lipocalin differences between tolerant and intolerant contact lens wearers. Curr Eye Res 2002; 25: 227–235.
  • van Setten GB, Tervo T, Andersson R, Perheentupa J, Tarkkanen A. Plasmin and epidermal growth factor in the tear fluid of contact‐lens wearers: effect of wearing different types of contact lenses and association with clinical findings. Ophthalmic Res 1990; 22: 233–240.
  • Baleriola‐lucas C, Fukuda M, Willcox MD, Sweeney DF, Holden BA. Fibronectin concentration in tears of contact lens wearers. Exp Eye Res 1997; 64: 37–43.
  • Thakur A, Willcox MD. Contact lens wear alters the production of certain inflammatory mediators in tears. Exp Eye Res 2000; 70: 255–259.
  • Schultz CL, Kunert KS. Interleukin‐6 levels in tears of contact lens wearers. J Interferon Cytokine Res 2000; 20: 309–310.
  • Poyraz C, Irkec M, Mocan MC. Elevated tear interleukin‐6 and interleukin‐8 levels associated with silicone hydrogel and conventional hydrogel contact lens wear. Eye Contact Lens 2012; 38: 146–149.
  • Grus FH, Sabuncuo P, Augustin AJ. Quantitative analysis of tear protein profile for soft contact lenses: a clinical study. Klin Monbl Augenheilkd 2001; 218: 239–242.
  • Mcclellan KA, Cripps AW, Clancy RL, Billson FA. The effect of successful contact lens wear on mucosal immunity of the eye. Ophthalmology 1998; 105: 1471–1477.
  • Kramann C, Boehm N, Lorenz K et al. Effect of contact lenses on the protein composition in tear film: a ProteinChip study. Graefes Arch Clin Exp Ophthalmol 2011; 249: 233–243.
  • Danjo Y, Lee M, Horimoto K, Hamano T. Ocular surface damage and tear lactoferrin in dry eye syndrome. Acta Ophthalmol (Copenh) 1994; 72: 433–437.
  • Ohashi Y, Ishida R, Kojima T et al. Abnormal protein profiles in tears with dry eye syndrome. Am J Ophthalmol 2003; 136: 291–299.
  • Grus FH, Podust VN, Bruns K et al. SELDI‐TOF‐MS ProteinChip array profiling of tears from patients with dry eye. Invest Ophthalmol Vis Sci 2005; 46: 863–876.
  • Zhou L, Beuerman RW, Chan CM et al. Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res 2009; 8: 4889–4905.
  • Ng V, Cho P, Wong F, Chan Y. Variability of tear protein levels in normal young adults: diurnal (daytime) variation. Graefes Arch Clin Exp Ophthalmol 2001; 239: 257–263.
  • Masoudi S, Stapleton FJ, Willcox MD. Contact lens‐induced discomfort and protein changes in tears. Optom Vis Sci 2016; 93: 955–962.
  • Grus FH, Kramann C, Bozkurt N et al. Effects of multipurpose contact lens solutions on the protein composition of the tear film. Contact Lens Anterior Eye 2005; 28: 103–112.
  • Funke S, Azimi D, Wolters D, Grus FH, Pfeiffer N. Longitudinal analysis of taurine induced effects on the tear proteome of contact lens wearers and dry eye patients using a RP‐RP‐Capillary‐HPLC‐MALDI TOF/TOF MS approach. J Proteomics 2012; 75: 3177–3190.
  • Omali NB, Zhao Z, Zhu H, Tilia D, Willcox MD. Quantification of individual proteins in silicone hydrogel contact lens deposits. Mol Vis 2013; 19: 390–399.
  • Barniak VL, Burke SE, Venkatesh S. Comparative evaluation of multi‐purpose solutions in the stabilization of tear lysozyme. Contact Lens Anterior Eye 2010; 33 Suppl 1: S7–11.
  • Wright EA, Payne KA, Jowitt TA et al. Preservation of human tear protein structure and function by a novel contact lens multipurpose solution containing protein‐stabilizing agents. Eye Contact Lens 2012; 38: 36–42.
  • von Thun und hohenstein‐blaul N, Funke S, Grus FH. Tears as a source of biomarkers for ocular and systemic diseases. Exp Eye Res 2013; 117: 126–137.
  • Zhou L, Beuerman RW. Tear analysis in ocular surface diseases. Prog Retin Eye Res 2012; 31: 527–550.
  • Griffiths HR, Moller L, Bartosz G et al. Biomarkers. Mol Aspects Med 2002; 23: 101–208.
  • Georgakopoulos CD, Lamari FN, Karathanasopoulou IN, Gartaganis VS, Pharmakakis NM, Karamanos NK. Tear analysis of ascorbic acid, uric acid and malondialdehyde with capillary electrophoresis. Biomed Chromatogr 2010; 24: 852–857.
  • Aho VV, Paavilainen V, Nevalainen TJ, Peuravuori H, Saari KM. Diurnal variation in group IIa phospholipase A2 content in tears of contact lens wearers and normal controls. Graefes Arch Clin Exp Ophthalmol 2003; 241: 85–88.
  • Mochizuki H, Yamada M, Hatou S, Kawashima M, Hata S. Deposition of lipid, protein, and secretory phospholipase A2 on hydrophilic contact lenses. Eye Contact Lens 2008; 34: 46–49.
  • Campbell D, Griffiths G, Tighe BJ. Tear analysis and lens‐tear interactions: part II. Ocular lipids‐nature and fate of meibomian gland phospholipids. Cornea 2011; 30: 325–332.
  • Yasueda S, Yamakawa K, Nakanishi Y, Kinoshita M, Kakehi K. Decreased mucin concentrations in tear fluids of contact lens wearers. J Pharm Biomed Anal 2005; 39: 187–195.
  • Garcher C, Bron A, Baudouin C, Bildstein L, Bara J. CA 19–9 ELISA test: a new method for studying mucus changes in tears. Br J Ophthalmol 1998; 82: 88–90.
  • Hori Y, Argueso P, Spurr‐michaud S, Gipson IK. Mucins and contact lens wear. Cornea 2006; 25: 176–181.
  • Corrales RM, Galarreta D, Herreras JM et al. Conjunctival mucin mRNA expression in contact lens wear. Optom Vis Sci 2009; 86: 1051–1058.
  • Doughty MJ. Contact lens wear and the goblet cells of the human conjunctiva: a review. Contact Lens Anterior Eye 2011; 34: 157–163.
  • Imayasu M, Shimizu H, Shimada S, Suzuki T, Cavanagh HD. Effects of multipurpose contact‐lens care solutions on adhesion of Pseudomonas aeruginosa to corneal epithelial cells. Eye Contact Lens 2009; 35: 98–104.
  • Gordon GM, Moradshahi N, Jeong S, Lane C, Fini ME. A novel mechanism of increased infections in contact lens wearers. Invest Ophthalmol Vis Sci 2011; 52: 9188–9194.
  • Maltseva IA, Fleiszig SM, Evans DJ et al. Exposure of human corneal epithelial cells to contact lenses in vitro suppresses the upregulation of human beta‐defensin‐2 in response to antigens of Pseudomonas aeruginosa. Exp Eye Res 2007; 85: 142–153.
  • Fleiszig SM, Efron N. Microbial flora in eyes of current and former contact lens wearers. J Clin Microbiol 1992; 30: 1156–1161.
  • Szczotka‐flynn LB, Pearlman E, Ghannoum M. Microbial contamination of contact lenses, lens care solutions, and their accessories: a literature review. Eye Contact Lens 2010; 36: 116–129.
  • Cheung SW, Boost M, Shi GS, Cho P. Microbial contamination of periorbital tissues and accessories of children. Optom Vis Sci 2016; 93: 612–618.
  • Iskeleli G, Bahar H, Eroglu E, Torun MM, Ozkan S. Microbial changes in conjunctival flora with 30‐day continuous‐wear silicone hydrogel contact lenses. Eye Contact Lens 2005; 31: 124–126.
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15: 167–193.
  • Hume EB, Stapleton F, Willcox MD. Evasion of cellular ocular defenses by contact lens isolates of Serratia marcescens. Eye Contact Lens 2003; 29: 108–112.
  • Shin H, Price K, Albert L, Dodick J, Park L, Dominguez‐bello MG. Changes in the eye microbiota associated with contact lens wearing. MBio 2016; 7: e00198‐00116.
  • Zhang H, Zhao F, Hutchinson DS et al. Conjunctival microbiome changes associated with soft contact lens and orthokeratology lens wearing. Invest Ophthalmol Vis Sci 2017; 58: 128–136.
  • Lee SH, Oh DH, Jung JY, Kim JC, Jeon CO. Comparative ocular microbial communities in humans with and without blepharitis. Invest Ophthalmol Vis Sci 2012; 53: 5585–5593.
  • Rothman Kenneth J. Epidemiology: an Introduction, 2nd edn. New York: Oxford University Press, 2012.
  • Shi GS, Boost M, Cho P. Prevalence of antiseptic‐resistance genes in staphylococci isolated from orthokeratology lens and spectacle wearers in Hong Kong. Invest Ophthalmol Vis Sci 2015; 56: 3069–3074.
  • Guang‐sen S, Boost M, Cho P. Prevalence of antiseptic resistance genes increases in staphylococcal isolates from orthokeratology lens wearers over initial six‐month period of use. Eur J Clin Microbiol Infect Dis 2016; 35: 955–962.
  • Shi GS, Boost MV, Cho P. Does the presence of QAC genes in staphylococci affect the efficacy of disinfecting solutions used by orthokeratology lens wearers? Br J Ophthalmol 2016; 100: 708–712.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.