295
Views
18
CrossRef citations to date
0
Altmetric
Invited Review

Optical coherence tomography and scleral contact lenses: clinical and research applications

, PhD, , PhD & , PhD
Pages 224-241 | Received 29 Apr 2018, Accepted 24 Jun 2018, Published online: 15 Apr 2021

REFERENCES

  • Vincent SJ. The rigid lens renaissance: a surge in sclerals. Cont Lens Anterior Eye 2018; 41: 139–143.
  • Pullum KW. The unique role of scleral lenses in contact lens practice. Cont Lens Anterior Eye 1999; 22: S26–S34.
  • Pullum KW, Trodd TC. The modern concept of scleral lens practice. J Br Cont Lens Assoc 1984; 7: 169–178.
  • Pullum KW, Whiting MA, Buckley RJ. Scleral contact lenses: the expanding role. Cornea 2005; 24: 269–277.
  • Van der worp E, Bornman D, Ferreira DL et al. Modern scleral contact lenses: a review. Cont Lens Anterior Eye 2014; 37: 240–250.
  • Downie LE, Lindsay RG. Contact lens management of keratoconus. Clin Exp Optom 2015; 98: 299–311.
  • Pearson RM. Karl Otto Himmler, manufacturer of the first contact lens. Cont Lens Anterior Eye 2007; 30: 11–16.
  • Pearson RM. The Sämisch Case and the Müllers of Wiesbaden. Optom Vis Sci 2009; 86: 157–164.
  • Koppen C, Kreps EO, Anthonissen L et al. Scleral lenses reduce the need for corneal transplants in severe Keratoconus. Am J Ophthalmol 2018; 185: 43–47.
  • Izatt J, Hee M, Swanson E et al. Micrometer‐scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol 1994; 112: 1584–1589.
  • Pierro L, Iuliano L, Gagliardi M et al. Central corneal thickness reproducibility among ten different instruments. Optom Vis Sci 2016; 93: 1371–1379.
  • Yadav R, Lee K‐S, Rolland JP et al. Micrometer axial resolution OCT for corneal imaging. Biomed Opt Express 2011; 2: 3037–3046.
  • Li Y, Tan O, Brass R et al. Corneal epithelial thickness mapping by Fourier‐domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology 2012; 119: 2425–2433.
  • Isozaki VL, Chiu GB. Transient corneal epithelial bullae associated with large diameter scleral lens wear: a case series. Cont Lens Anterior Eye 2018; doi: 10.1016/j.clae.2018.05.002.
  • Guillon NC, Godfrey A, Hammond DS. Corneal oedema in a unilateral corneal graft patient induced by high Dk mini‐scleral contact lens. Cont Lens Anterior Eye 2018; doi: 10.1016/j.clae.2018.05.004.
  • Olsen T, Aaberg S, Geroski D et al. Human sclera: thickness and surface area. Am J Ophthalmol 1998; 125: 237–241.
  • Atchison D, Jones C, Schmid K et al. Eye shape in emmetropia and myopia. Invest Ophthalmol Vis Sci 2004; 45: 3380–3386.
  • Duong T. Magnetic resonance imaging of the retina: a brief historical and future perspective. Saudi J Ophthalmol 2011; 25: 137–143.
  • Bert R, Patz S, Ossiani M et al. High‐resolution MR imaging of the human eye 2005. Acad Radiol 2006; 13: 368–378.
  • Alonso‐caneiro D, Vincent SJ, Collins MJ et al. Morphological changes in the conjunctiva, episclera and sclera following short‐term miniscleral contact lens wear in rigid lens neophytes. Cont Lens Anterior Eye 2016; 39: 53–61.
  • Ebneter A, Häner NU, Zinkernagel MS. Metrics of the normal anterior sclera: imaging with optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2015; 253: 1575–1580.
  • Read SA, Alonso‐caneiro D, Vincent SJ et al. Anterior eye tissue morphology: scleral and conjunctival thickness in children and young adults. Sci Rep 2016; 6: 33796.
  • Rada J, Achen V, Penugonda S et al. Proteoglycan composition in the human sclera during growth and aging. Invest Ophthalmol Vis Sci 2000; 41: 1639–1648.
  • Fazio M, Grytz R, Morris J et al. Human scleral structural stiffness increases more rapidly with age in donors of African descent compared to donors of European descent. Invest Ophthalmol Vis Sci 2014; 55: 7189–7198.
  • Grytz R, Fazio M, Libertiaux V et al. Age‐ and race‐related differences in human scleral material properties. Invest Ophthalmol Vis Sci 2014; 55: 8163–8172.
  • Read SA, Alonso‐caneiro D, Free KA et al. Diurnal variation of anterior scleral and conjunctival thickness. Ophthalmic Physiol Opt 2016; 36: 279–289.
  • Vincent SJ, Alonso‐caneiro D, Collins MJ. Evidence on scleral contact lenses and intraocular pressure. Clin Exp Optom 2017; 100: 87–88.
  • Nau CB, Schornack MM, Mclaren JW et al. Intraocular pressure after 2 hours of small‐diameter scleral lens wear. Eye Contact Lens 2016; 42: 350–353.
  • Murphy PJ, Duncan AL, Glennie AJ et al. The effect of scleral search coil lens wear on the eye. Br J Ophthalmol 2001; 85: 332–335.
  • Pearson RM. The centenary of the contact lens. J Br Contact Lens Assoc 1988; 11: 12–16.
  • Marriott P. An analysis of the global contours and haptic contact lens fitting. Br J Physiol Opt 1966; 23: 1–40.
  • Jesus DA, Kedzia R, Iskander DR. Precise measurement of scleral radius using anterior eye profilometry. Cont Lens Anterior Eye 2017; 40: 47–52.
  • Hall LA, Young G, Wolffsohn JS et al. The influence of corneoscleral topography on soft contact lens fit. Invest Ophthalmol Vis Sci 2011; 52: 6801–6806.
  • Hall LA, Hunt C, Young G et al. Factors affecting corneoscleral topography. Invest Ophthalmol Vis Sci 2013; 54: 3691–3701.
  • Lee SM, Choi HJ, Choi H et al. Estimation of axial curvature of anterior sclera: correlation between axial length and anterior scleral curvature as affected by angle kappa. BMC Ophthalmol 2016; 16: 176.
  • Kasahara M, Shoji N, Morita T et al. Comparative optical coherence tomography study of differences in scleral shape between the superonasal and superotemporal quadrants. Jpn J Ophthalmol 2014; 58: 396–401.
  • Bandlitz S, Bäumer J, Conrad U et al. Scleral topography analysed by optical coherence tomography. Cont Lens Anterior Eye 2017; 40: 242–247.
  • Choi HJ, Lee S‐M, Lee JY et al. Measurement of anterior scleral curvature using anterior segment OCT. Optom Vis Sci 2014; 91: 793–802.
  • Meier D. Das cornea‐skleral‐profilein kriterium individueller kontaktlinsenanpassung. Die Kontaktlinse 1992; 10: 4–11.
  • Ritzmann M, Caroline PJ, Börret R et al. An analysis of anterior scleral shape and its role in the design and fitting of scleral contact lenses. Cont Lens Anterior Eye 2018; 41: 205–213.
  • Fadel D. The influence of limbal and scleral shape on scleral lens design. Cont Lens Anterior Eye 2018; 41: 321–328.
  • Tan B, Graham AD, Tsechpenakis G et al. A novel analytical method using OCT to describe the corneoscleral junction. Optom Vis Sci 2014; 91: 650–657.
  • Van der worp E, Graf P, Caroline PJ. Exploring beyond the corneal borders. Contact Lens Spectr 2010; 25: 26–32.
  • Kojima R, Caroline P, Graff T et al. Eye shape and scleral lenses. Contact Lens Spectr 2013; 28: 38–43.
  • Sorbara L, Maram J, Mueller K. Use of the Visante™ OCT to measure the sagittal depth and scleral shape of keratoconus compared to normal corneae: pilot study. J Optom 2013; 6: 141–146.
  • Sorbara L, Maram J, Fonn D et al. Metrics of the normal cornea: anterior segment imaging with the Visante OCT. Clin Exp Optom 2010; 93: 150–156.
  • Iskander DR, Wachel P, Simpson PND et al. Principles of operation, accuracy and precision of an eye surface profiler. Ophthalmic Physiol Opt 2016; 36: 266–278.
  • Vincent SJ, Kowalski LP, Alonso‐caneiro D, et al. The influence of centre thickness on miniscleral lens flexure. Cont Lens Anterior Eye 2018; doi: 10.1016/j.clae.2018.07.003.
  • Schornack MM, Patel SV. Relationship between corneal topographic indices and scleral lens base curve. Eye Cont Lens 2010; 36: 330–333.
  • Consejo A, Rozema JJ. Scleral shape and its correlations with corneal astigmatism. Cornea 2018; 37: 1047–1052.
  • Gemoules G. A novel method of fitting scleral lenses using high resolution optical coherence tomography. Eye Cont Lens 2008; 34: 80–83.
  • Karnowski K, Grulkowski I, Mohan N et al. Quantitative optical inspection of contact lenses immersed in wet cell using swept source OCT. Opt Lett 2014; 39: 4727–4730.
  • Ramasubramanian V, Glasser A. Distortion correction of Visante optical coherence tomography cornea images. Optom Vis Sci 2015; 92: 1170–1181.
  • Podoleanu A, Charalambous I, Plesea L et al. Correction of distortions in optical coherence tomography imaging of the eye. Phys Med Biol 2004; 49: 1277–1294.
  • Westphal V, Rollins A, Radhakrishnan S et al. Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle. Opt Express 2004; 10: 397–404.
  • Lin RC, Shure MA, Rollins AM et al. Group index of the human cornea at 1.3 µm wavelength obtained in vitro by optical coherence domain reflectometry. Opt Lett 2004; 29: 83–85.
  • Bier N. Contact Lens Routine and Practice. London: Butterworths Scientific Publications, 1957.
  • Marriott P, Woodward E. A method of measuring the corneal clearance of a haptic lens. Br J Physiol Opt 1964; 21: 61–83.
  • Rathi VM, Mandathara PS, Dumpati S et al. Change in vault during scleral lens trials assessed with anterior segment optical coherence tomography. Cont Lens Anterior Eye 2017; 40: 157–161.
  • Sonsino J, Mathe DS. Central vault in dry eye patients successfully wearing scleral lens. Optom Vis Sci 2013; 90: e248–e251.
  • Jedlicka J. Initial lens selection. In: Barnett M, Johns LK, eds. Contemporary Scleral Lenses: Theory and Application. Sharjah: Bentham Science Publishers, 2017. pp. 183–200.
  • Vincent SJ, Alonso‐caneiro D, Collins MJ. Corneal changes following short‐term miniscleral contact lens wear. Cont Lens Anterior Eye 2014; 37: 461–468.
  • Vincent SJ, Alonso‐caneiro D, Collins MJ. Miniscleral lens wear influences corneal curvature and optics. Ophthalmic Physiol Opt 2016; 36: 100–111.
  • Bauer A, Lotoczky J. Let's settle this once and for all: a comparison of scleral lens settling. Global Specialty Lens Symposium 2015.
  • Kauffman MJ, Gilmartin CA, Bennett ES et al. A comparison of the short‐term settling of three scleral lens designs. Optom Vis Sci 2014; 91: 1462–1466.
  • Esen F, Toker E. Influence of apical clearance on mini‐scleral lens settling, clinical performance, and corneal thickness changes. Eye Contact Lens 2017; 43: 230–235.
  • Vincent SJ, Alonso‐caneiro D, Collins MJ. The temporal dynamics of miniscleral contact lenses: central corneal clearance and centration. Cont Lens Anterior Eye 2018; 41: 162–168.
  • Fadel D. Modern scleral lenses: mini versus large. Cont Lens Anterior Eye 2017; 40: 200–207.
  • Courey C, Michaud L. Variation of clearance considering viscosity of the solution used in the reservoir and following scleral lens wear over time. Cont Lens Anterior Eye 2017; 40: 260–266.
  • Bray C, Britton S, Yeung D et al. Change in over‐refraction after scleral lens settling on average corneas. Ophthalmic Physiol Opt 2017; 37: 467–472.
  • Caroline PJ, Andre M. Scleral lens settling. Cont Lens Spectr 2012; 27: 56.
  • Otchere H, Jones LW, Sorbara L. Effect of time on scleral lens settling and change in corneal clearance. Optom Vis Sci 2017; 94: 908–913.
  • Nau CB, Schornack MM. Region‐specific changes in postlens fluid reservoir depth beneath small‐diameter scleral lenses over 2 hours. Eye Contact Lens 2017; doi: 10.1097/ICL.0000000000000382.
  • Visser E‐S, Van der linden BJJJ, Otten HM et al. Medical applications and outcomes of bitangential scleral lenses. Optom Vis Sci 2013; 90: 1078–1085.
  • Lotoczky J, Cosgrove J, Slate F. Do scleral lenses suck? An analysis of what really happens as scleral lenses “Settle.” Global Speciality Lens Symposium. 2018.
  • Vincent SJ, Alonso‐caneiro D, Kricancic H et al. Scleral contact lens thickness profiles: the relationship between average and centre lens thickness. Cont Lens Anterior Eye 2018; doi: 10.1016/j.clae.2018.03.002.
  • Fuller DG, Chan N, Smith B. Neophyte skill judging corneoscleral lens clearance. Optom Vis Sci 2016; 93: 300–304.
  • Yeung D, Sorbara L. Scleral lens clearance assessment with biomicroscopy and anterior segment optical coherence tomography. Optom Vis Sci 2018; 95: 13–20.
  • Vincent SJ, Alonso‐caneiro D, Collins MJ et al. Hypoxic corneal changes following eight hours of scleral contact lens wear. Optom Vis Sci 2016; 93: 293–299.
  • Arlt C. Clinical effect of tear layer thickness on corneal edema during scleral lens wear. Maters Thesis, Aalen University, Germany, 2015.
  • Frisani M, Beltramo I, Grec M. Changes in corneal thickness by miniscleral contact lenses. Cont Lens Anterior Eye 2015; 38: e38–e39.
  • Tan B, Zhou Y, Yuen TL et al. Effects of scleral‐lens tear clearance on corneal edema and post‐lens tear dynamics: a pilot study. Optom Vis Sci 2018; 95: 481–490.
  • Tse JS‐H, Wong AC‐K. Atypical limbal epithelial bullae associated with scleral lens wear: a case series. Berlin: European Academy of Optometry and Optics, 2016.
  • Nixon AD, Barr JT, Vannasdale DA. Corneal epithelial bullae after short‐term wear of small diameter scleral lenses. Cont Lens Anterior Eye 2017; 40: 116–126.
  • Michaud L, Van der worp E, Brazeau D et al. Predicting estimates of oxygen transmissibility for scleral lenses. Cont Lens Anterior Eye 2012; 35: 266–271.
  • Carney LG. Luminance of fluorescein solutions. Am J Optom Arch Am Acad Optom 1972; 49: 200–204.
  • Visser E‐S, Visser R, Van LHJJ. Advantages of toric scleral lenses. Optom Vis Sci 2006; 83: 233–236.
  • Li P, An L, Reif R et al. In vivo microstructural and microvascular imaging of the human corneo‐scleral limbus using optical coherence tomography. Biomed Opt Express 2011; 2: 3109–3118.
  • Sabesan R, Johns L, Tomashevskaya O et al. Wavefront‐guided scleral lens prosthetic device for keratoconus. Optom Vis Sci 2013; 90: 314–323.
  • Marsack JD, Ravikumar A, Nguyen C et al. Wavefront‐guided scleral lens correction in keratoconus. Optom Vis Sci 2014; 91: 1221–1230.
  • BS EN ISO 18369‐2 : 2017 BSI Standards Publication Ophthalmic optics ‐ Contact lenses.
  • Brennan NA. Average thickness of a hydrogel lens for gas transmissibility calculations. Am J Optom Physiol Opt 1984; 61: 627–635.
  • Brennan NA. Application of hydrogel lens average thickness. Am J Optom Physiol Opt 1984; 61: 636–642.
  • Guillon M, Crosbie‐walsh J, Brynes D. Application of pachometry to the measurement of rigid contact lens edge profile. J Br Cont Lens Assoc 1987; 10: 16–22.
  • Walker MK, Bergmanson JP, Miller WL et al. Complications and fitting challenges associated with scleral contact lenses: a review. Cont Lens Anterior Eye 2016; 39: 88–96.
  • Rathi VM, Mandathara PS, Vaddavalli PK et al. Fluid filled scleral contact lens in pediatric patients: challenges and outcome. Cont Lens Anterior Eye 2012; 35: 189–192.
  • Carracedo G, Serramito‐blanco M, Martin‐gil A et al. Post‐lens tear turbidity and visual quality after scleral lens wear. Clin Exp Optom 2017; 100: 577–582.
  • Dallos J. Sattler's veil. Br J Ophthalmol 1946; 30: 607–613.
  • Bier N. The tolerance factor and Sattler's veil as influenced by a new development of contact lens making. Am J Optom Arch Am Acad Optom 1947; 24: 611–615.
  • Ezekiel D. Gas permeable haptic lenses. J Br Contact Lens Assoc 1983; 6: 158–161.
  • Choyce DP. Glass contact lenses effects of ventilation. Br J Ophthalmol 1954; 38: 100–114.
  • Treissman H. Some observations on the causation and elimination of Sattler's veil. Br J Ophthalmol 1949; 33: 555–567.
  • Bleshoy H, Pullum KW. Corneal response to gas‐permeable impression scleral lenses. J Br Cont Lens Assoc 1988; 11: 31–34.
  • Pullum KW, Hobley AJ, Parker JH. Hypoxic corneal changes following sealed gas permeable impression scleral lens wear. J Br Cont Lens Assoc 1990; 13: 83–87.
  • Pullum K, Stapleton F. Scleral lens induced corneal swelling: what is the effect of varying Dk and lens thickness? CLAO 1997; 23: 259–263.
  • Smith GT, Mireskandari K, Pullum KW. Corneal swelling with overnight wear of scleral contact lenses. Cornea 2004; 23: 29–34.
  • Pullum KW, Hobley AJ, Davison C. 100+ Dk: does thickness make much difference? J Br Cont Lens Assoc 1991; 14: 17–19.
  • Vincent SJ, Alonso‐caneiro D, Collins MJ. The time course and nature of corneal oedema during sealed miniscleral contact lens wear. Cont Lens Anterior Eye 2018; doi: 10.1016/j.clae.2018.03.001.
  • Hutchings N, Simpson TL, Hyun C et al. Swelling of the human cornea revealed by high‐speed, ultrahigh‐resolution optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51: 4579–4584.
  • Giasson CJ, Morency J, Melillo M et al. Oxygen tension beneath scleral lenses of different clearances. Optom Vis Sci 2016; 94: 466–475.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.