119
Views
3
CrossRef citations to date
0
Altmetric
Invited Review

Optical coherence tomography evaluation of the optic nerve head neuro‐retinal rim in glaucoma

, OD PhD
Pages 286-290 | Received 29 Jun 2018, Accepted 09 Aug 2018, Published online: 15 Apr 2021

REFERENCES

  • Fremont AM, Lee PP, Mangione CM et al. Patterns of care for open‐angle glaucoma in managed care. Arch Ophthalmol 2003; 121: 777–783.
  • Quigley HA, Friedman DS, Hahn SR. Evaluation of practice patterns for the care of open‐angle glaucoma compared with claims data: the Glaucoma Adherence and Persistency Study. Ophthalmology 2007; 114: 1599–1606.
  • Varma R, Steinmann WC, Scott IU. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology 1992; 99: 215–221.
  • Azuara‐blanco A, Katz LJ, Spaeth GL et al. Clinical agreement among glaucoma experts in the detection of glaucomatous changes of the optic disk using simultaneous stereoscopic photographs. Am J Ophthalmol 2003; 136: 949–950.
  • Altangerel U, Bayer A, Henderer JD et al. Knowledge of chronology of optic disc stereophotographs influences the determination of glaucomatous change. Ophthalmology 2005; 112: 40–43.
  • Parrish RK II, Schiffman JC, Feuer WJ et al. Test‐retest reproducibility of optic disk deterioration detected from stereophotographs by masked graders. Am J Ophthalmol 2005; 140: 762–764.
  • Jampel HD, Friedman D, Quigley H et al. Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open‐angle glaucoma patients. Am J Ophthalmol 2009; 147: 39–44.
  • Breusegem C, Fieuws S, Stalmans I et al. Agreement and accuracy of non‐expert ophthalmologists in assessing glaucomatous changes in serial stereo optic disc photographs. Ophthalmology 2011; 118: 742–746.
  • Hong SW, Koenigsman H, Ren R et al. Glaucoma specialist optic disc margin, rim margin and rim width discordance in glaucoma and glaucoma suspect eyes. Am J Ophthalmol 2018; 192: 65–76.
  • Reus NJ, Lemij HG, Garway‐heath DF et al. Clinical assessment of stereoscopic optic disc photographs for glaucoma: the European Optic Disc Assessment Trial. Ophthalmology 2010; 117: 717–723.
  • Lin SC, Singh K, Jampel HD et al. Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology. Ophthalmology 2007; 114: 1937–1949.
  • Fingeret M, Flanagan JG, Liebmann JM. The Essential HRT Primer. San Ramon, CA: Jocoto Advertising, Inc., 2005.
  • Sharma P, Sample PA, Zangwill LM et al. Diagnostic tools for glaucoma detection and management. Surv Ophthalmol 2008; 53 (Suppl 1): S17–S32.
  • Wollstein G, Garway‐heath DF, Fontana L et al. Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology 2000; 107: 2272–2277.
  • Alencar LM, Bowd C, Weinreb RN et al. Comparison of HRT‐3 glaucoma probability score and subjective stereophotograph assessment for prediction of progression in glaucoma. Invest Ophthalmol Vis Sci 2008; 49: 1898–1906.
  • Zangwill LM, Weinreb RN, Beiser JA et al. Baseline topographic optic disc measurements are associated with the development of primary open‐angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. Arch Ophthalmol 2005; 123: 1188–1197.
  • Zangwill LM, Jain S, Dirkes K et al. The rate of structural change: the confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study. Am J Ophthalmol 2013; 155: 971–982.
  • Schrems‐hoesl LM, Schrems WA, Laemmer R et al. Confocal laser scanning tomography to predict visual field conversion in patients with ocular hypertension and early glaucoma. J Glaucoma 2016; 25: 371–376.
  • Reis AS, O'leary N, Yang H et al. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci 2012; 53: 1852–1860.
  • Reis AS, Sharpe GP, Yang H et al. Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology 2012; 119: 738–747.
  • Chauhan BC, Burgoyne CF. From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am J Ophthalmol 2013; 156: 218–227.e212.
  • Danthurebandara VM, Sharpe GP, Hutchison DM et al. Enhanced structure‐function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement. Invest Ophthalmol Vis Sci 2015; 56: 98–105.
  • Kamal DS, Garway‐heath DF, Hitchings RA et al. Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocular hypertensive patients at risk of developing glaucoma. Br J Ophthalmol 2000; 84: 993–998.
  • Strouthidis NG, White ET, Owen VM et al. Improving the repeatability of Heidelberg retina tomograph and Heidelberg retina tomograph II rim area measurements. Br J Ophthalmol 2005; 89: 1433–1437.
  • Strouthidis NG, White ET, Owen VM et al. Factors affecting the test‐retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements. Br J Ophthalmol 2005; 89: 1427–1432.
  • Vizzeri G, Bowd C, Weinreb RN et al. Determinants of agreement between the confocal scanning laser tomograph and standardized assessment of glaucomatous progression. Ophthalmology 2010; 117: 1953–1959.
  • O'leary N, Crabb DP, Mansberger SL et al. Glaucomatous progression in series of stereoscopic photographs and Heidelberg retina tomograph images. Arch Ophthalmol 2010; 128: 560–568.
  • Johnstone J, Fazio M, Rojananuangnit K et al. Variation of the axial location of Bruch's membrane opening with age, choroidal thickness, and race. Invest Ophthalmol Vis Sci 2014; 55: 2004–2009.
  • Vianna JR, Lanoe VR, Quach J et al. Serial changes in lamina Cribrosa depth and Neuroretinal parameters in glaucoma: impact of Choroidal thickness. Ophthalmology 2017; 124: 1392–1402.
  • Luo H, Yang H, Gardiner SK et al. Factors influencing Central Lamina Cribrosa depth: a multicenter study. Invest Ophthalmol Vis Sci 2018; 59: 2357–2370.
  • Mwanza JC, Oakley JD, Budenz DL et al. Ability of cirrus HD‐OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology 2011; 118: 241–248.e241.
  • Hwang YH, Kim YY. Glaucoma diagnostic ability of quadrant and clock‐hour neuroretinal rim assessment using cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53: 2226–2234.
  • Loewen NA, Zhang X, Tan O et al. Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier‐domain optical coherence tomography. Br J Ophthalmol 2015; 99: 1224–1229.
  • Mwanza JC, Warren JL, Budenz DL et al. Combining spectral domain optical coherence tomography structural parameters for the diagnosis of glaucoma with early visual field loss. Invest Ophthalmol Vis Sci 2013; 54: 8393–8400.
  • Larrosa JM, Moreno‐montanes J, Martinez‐de‐la‐casa JM et al. A diagnostic calculator for detecting glaucoma on the basis of retinal nerve fiber layer, optic disc, and retinal ganglion cell analysis by optical coherence tomography. Invest Ophthalmol Vis Sci 2015; 56: 6788–6795.
  • Povazay B, Hofer B, Hermann B et al. Minimum distance mapping using three‐dimensional optical coherence tomography for glaucoma diagnosis. J Biomed Opt 2007; 12: 041204.
  • Chen TC. Spectral domain optical coherence tomography in glaucoma: qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (an AOS thesis). Trans Am Ophthalmol Soc 2009; 107: 254–281.
  • Gmeiner JM, Schrems WA, Mardin CY et al. Comparison of Bruch's membrane opening minimum rim width and peripapillary retinal nerve fiber layer thickness in early glaucoma assessment. Invest Ophthalmol Vis Sci 2016; 57: 575–584.
  • Chauhan BC, O'leary N, Almobarak FA et al. Enhanced detection of open‐angle glaucoma with an anatomically accurate optical coherence tomography‐derived neuroretinal rim parameter. Ophthalmology 2013; 120: 535–543.
  • Gardiner SK, Ren R, Yang H et al. A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area. Am J Ophthalmol 2014; 157: 540–549.e1–2.
  • Enders P, Adler W, Kiessling D et al. Evaluation of two‐dimensional Bruch's membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort. Acta Ophthalmol 2018; https://doi.org/10.1111/aos.13698.
  • Patel NB, Sullivan‐mee M, Harwerth RS. The relationship between retinal nerve fiber layer thickness and optic nerve head neuroretinal rim tissue in glaucoma. Invest Ophthalmol Vis Sci 2014; 55: 6802–6816.
  • Amini N, Daneshvar R, Sharifipour F et al. Structure‐function relationships in Perimetric glaucoma: comparison of minimum‐rim width and retinal nerve fiber layer parameters. Invest Ophthalmol Vis Sci 2017; 58: 4623–4631.
  • Enders P, Adler W, Schaub F et al. Novel Bruch's membrane opening minimum rim area equalizes disc size dependency and offers high diagnostic power for glaucoma. Invest Ophthalmol Vis Sci 2016; 57: 6596–6603.
  • Malik R, Belliveau AC, Sharpe GP et al. Diagnostic accuracy of optical coherence tomography and scanning laser tomography for identifying glaucoma in myopic eyes. Ophthalmology 2016; 123: 1181–1189.
  • Shieh E, Lee R, Que C et al. Diagnostic performance of a novel three‐dimensional Neuroretinal rim parameter for glaucoma using high‐density volume scans. Am J Ophthalmol 2016; 169: 168–178.
  • Tsikata E, Lee R, Shieh E et al. Comprehensive three‐dimensional analysis of the Neuroretinal rim in glaucoma using high‐density spectral‐domain optical coherence tomography volume scans. Invest Ophthalmol Vis Sci 2016; 57: 5498–5508.
  • Fan KC, Tsikata E, Khoueir Z et al. Enhanced diagnostic capability for glaucoma of 3‐dimensional versus 2‐dimensional Neuroretinal rim parameters using spectral domain optical coherence tomography. J Glaucoma 2017; 26: 450–458.
  • Strouthidis NG, Fortune B, Yang H et al. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 1206–1219.
  • He L, Yang H, Gardiner SK et al. Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma. Invest Ophthalmol Vis Sci 2014; 55: 574–586.
  • Fortune B, Reynaud J, Hardin C et al. Experimental glaucoma causes optic nerve head neural rim tissue compression: a potentially important mechanism of axon injury. Invest Ophthalmol Vis Sci 2016; 57: 4403–4411.
  • Gardiner SK, Boey PY, Yang H et al. Structural measurements for monitoring change in glaucoma: comparing retinal nerve fiber layer thickness with minimum rim width and area. Invest Ophthalmol Vis Sci 2015; 56: 6886–6891.
  • Fortune B, Hardin C, Reynaud J et al. Comparing optic nerve head rim width, rim area, and Peripapillary retinal nerve fiber layer thickness to axon count in experimental glaucoma. Invest Ophthalmol Vis Sci 2016; 57: 404–412.
  • Enders P, Adler W, Schaub F et al. Optimization strategies for Bruch's membrane opening minimum rim area calculation: sequential versus simultaneous minimization. Sci Rep 2017; 7: 13874.
  • Vianna JR, Danthurebandara VM, Sharpe GP et al. Importance of normal aging in estimating the rate of glaucomatous neuroretinal rim and retinal nerve fiber layer loss. Ophthalmology 2015; 122: 2392–2398.
  • Gao SS, Jia Y, Zhang M et al. Optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2016; 57: 27–36.
  • Kashani AH, Chen CL, Gahm JK et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 2017; 60: 66–100.
  • Chen CL, Wang RK. Optical coherence tomography based angiography (Invited). Biomed Opt Express 2017; 8: 1056–1082.
  • Chansangpetch S, Lin SC. Optical coherence tomography angiography in glaucoma care. Curr Eye Res 2018; 43: 1067–1082.
  • Zhang M, Hwang TS, Campbell JP et al. Projection‐resolved optical coherence tomographic angiography. Biomed Opt Express 2016; 7: 816–828.
  • Takusagawa HL, Liu L, Ma KN et al. Projection‐resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology 2017; 124: 1589–1599.
  • Wang X, Jiang C, Ko T et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open‐angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 2015; 253: 1557–1564.
  • Lee EJ, Lee KM, Lee SH et al. OCT angiography of the peripapillary retina in primary open‐angle glaucoma. Invest Ophthalmol Vis Sci 2016; 57: 6265–6270.
  • Akagi T, Iida Y, Nakanishi H et al. Microvascular density in glaucomatous eyes with hemifield visual field defects: an Optical Coherence Tomography Angiography Study. Am J Ophthalmol 2016; 168: 237–249.
  • Kim SB, Lee EJ, Han JC et al. Comparison of peripapillary vessel density between preperimetric and perimetric glaucoma evaluated by OCT‐angiography. PLoS One 2017; 12: e0184297.
  • Chen HS, Liu CH, Wu WC et al. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci 2017; 58: 3637–3645.
  • Triolo G, Rabiolo A, Shemonski ND et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci 2017; 58: 5713–5722.
  • Alnawaiseh M, Lahme L, Muller V et al. Correlation of flow density, as measured using optical coherence tomography angiography, with structural and functional parameters in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 2018; 256: 589–597.
  • Manalastas PIC, Zangwill LM, Daga FB et al. The association between macula and ONH optical coherence tomography angiography (OCT‐A) vessel densities in glaucoma, glaucoma suspect, and healthy eyes. J Glaucoma 2018; 27: 227–232.
  • Akil H, Huang AS, Francis BA et al. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre‐perimetric glaucoma and normal eyes. PLoS One 2017; 12: e0170476.
  • Chen CL, Bojikian KD, Wen JC et al. Peripapillary retinal nerve fiber layer vascular microcirculation in eyes with glaucoma and single‐hemifield visual field loss. JAMA Ophthalmol 2017; 135: 461–468.
  • Yarmohammadi A, Zangwill LM, Diniz‐filho A et al. Peripapillary and macular vessel density in patients with glaucoma and single‐hemifield visual field defect. Ophthalmology 2017; 124: 709–719.
  • Yarmohammadi A, Zangwill LM, Manalastas PIC et al. Peripapillary and macular vessel density in patients with primary open‐angle glaucoma and unilateral visual field loss. Ophthalmology 2018; 125: 578–587.
  • Jia Y, Wei E, Wang X et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014; 121: 1322–1332.
  • Liu L, Jia Y, Takusagawa HL et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol 2015; 133: 1045–1052.
  • Yarmohammadi A, Zangwill LM, Diniz‐filho A et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology 2016; 123: 2498–2508.
  • Shoji T, Zangwill LM, Akagi T et al. Progressive macula vessel density loss in primary open‐angle glaucoma: a longitudinal study. Am J Ophthalmol 2017; 182: 107–117.
  • Moghimi S, Zangwill LM, Penteado RC et al. Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology 2018; https://doi.org/10.1016/j.ophtha.2018.05.006.
  • Bojikian KD, Chen CL, Wen JC et al. Optic disc perfusion in primary open angle and normal tension glaucoma eyes using optical coherence tomography‐based microangiography. PLoS One 2016; 11: e0154691.
  • Quigley HA, Hohman RM, Addicks EM et al. Blood vessels of the glaucomatous optic disc in experimental primate and human eyes. Invest Ophthalmol Vis Sci 1984; 25: 918–931.
  • Dai Y, Jonas JB, Huang H et al. Microstructure of parapapillary atrophy: beta zone and gamma zone. Invest Ophthalmol Vis Sci 2013; 54: 2013–2018.
  • Suh MH, Zangwill LM, Manalastas PI et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology 2016; 123: 2509–2518.
  • Suh MH, Zangwill LM, Manalastas PIC et al. Deep‐layer microvasculature dropout by optical coherence tomography angiography and microstructure of parapapillary atrophy. Invest Ophthalmol Vis Sci 2018; 59: 1995–2004.
  • Lee EJ, Kim TW, Kim JA et al. Central visual field damage and parapapillary choroidal microvasculature dropout in primary open‐angle glaucoma. Ophthalmology 2018; 125: 588–596.
  • Wollstein G, Paunescu LA, Ko TH et al. Ultrahigh‐resolution optical coherence tomography in glaucoma. Ophthalmology 2005; 112: 229–237.
  • Srinivasan VJ, Adler DC, Chen Y et al. Ultrahigh‐speed optical coherence tomography for three‐dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci 2008; 49: 5103–5110.
  • Kagemann L, Ishikawa H, Wollstein G et al. Ultrahigh‐resolution spectral domain optical coherence tomography imaging of the lamina cribrosa. Ophthalmic Surg Lasers Imaging 2008; 39: S126–S131.
  • Inoue R, Hangai M, Kotera Y et al. Three‐dimensional high‐speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Ophthalmology 2009; 116: 214–222.
  • Strouthidis NG, Grimm J, Williams GA et al. A comparison of optic nerve head morphology viewed by spectral domain optical coherence tomography and by serial histology. Invest Ophthalmol Vis Sci 2010; 51: 1464–1474.
  • Kim JA, Kim TW, Weinreb RN et al. Lamina cribrosa morphology predicts progressive retinal nerve fiber layer loss in eyes with suspected glaucoma. Sci Rep 2018; 8: 738.
  • Sigal IA, Wang B, Strouthidis NG et al. Recent advances in OCT imaging of the lamina cribrosa. Br J Ophthalmol 2014; 98 (Suppl 2): ii34–ii39.
  • Girard MJ, Tun TA, Husain R et al. Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques. Invest Ophthalmol Vis Sci 2015; 56: 865–874.
  • Tan NY, Koh V, Girard MJ et al. Imaging of the lamina cribrosa and its role in glaucoma: a review. Clin Exp Ophthalmol 2018; 46: 177–188.
  • Wang B, Tran H, Smith MA et al. In‐vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure. PLoS One 2017; 12: e0188302.
  • Tun TA, Atalay E, Baskaran M et al. Association of functional loss with the biomechanical response of the optic nerve head to acute transient intraocular pressure elevations. JAMA Ophthalmol 2018; 136: 184–192.
  • Sharma S, Tun TA, Baskaran M et al. Effect of acute intraocular pressure elevation on the minimum rim width in normal, ocular hypertensive and glaucoma eyes. Br J Ophthalmol 2018; 102: 131–135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.