126
Views
14
CrossRef citations to date
0
Altmetric
Invited Review

Future clinical applicability of optical coherence tomography angiography

, BOptom PhD, , PhD, , MBBS MMed (Ophth), , MD MBBS, , MMed, , MSc PhD, , MD PhD & , MD PhD show all
Pages 260-269 | Received 29 Aug 2018, Accepted 12 Oct 2018, Published online: 15 Apr 2021

REFERENCES

  • Leitgeb RA, Werkmeister RM, Blatter C et al. Doppler optical coherence tomography. Prog Retin Eye Res 2014; 41: 26–43.
  • Gao W. Quantitative depth resolved microcirculation imaging with optical coherence tomography angiography (Part 2): microvascular network imaging. Microcirculation 2017; http://doi.org/10.1111/micc.12376.
  • Gao W. Quantitative depth resolved microcirculation imaging with optical coherence tomography angiography (Part 1): blood flow velocity imaging. Microcirculation 2017; http://doi.org/10.1111/micc.12375.
  • Kashani AH, Chen CL, Gahm JK et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 2017; 60: 66–100.
  • Cole ED, Ferrara D, Novais EA et al. Clinical trial endpoints for optical coherence tomography angiography in neovascular age‐related macular degeneration. Retina 2016; 36 Suppl 1: S83–S92.
  • Pichi F, Sarraf D, Arepalli S et al. The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Prog Retin Eye Res 2017; 59: 178–201.
  • Sambhav K, Grover S, Chalam KV. The application of optical coherence tomography angiography in retinal diseases. Surv Ophthalmol 2017; 62: 838–866.
  • Cicinelli MV, Rabiolo A, Sacconi R et al. Optical coherence tomography angiography in dry age‐related macular degeneration. Surv Ophthalmol 2018; 63: 236–244.
  • Tan ACS, Tan GS, Denniston AK et al. An overview of the clinical applications of optical coherence tomography angiography. Eye (Lond) 2018; 32: 262–286.
  • Spaide RF, Fujimoto JG, Waheed NK et al. Optical coherence tomography angiography. Prog Retin Eye Res 2018; 64: 1–55.
  • Ang M, Tan ACS, Cheung CMG et al. Optical coherence tomography angiography: a review of current and future clinical applications. Graefes Arch Clin Exp Ophthalmol 2018; 256: 237–245.
  • Or C, Sabrosa AS, Sorour O et al. Use of OCT‐A, FA, and ultra‐widefield imaging in quantifying retinal ischemia: a review. Asia Pac J Ophthalmol (Phila) 2018; 7: 46–51.
  • Schneider EW, Fowler SC. Optical coherence tomography angiography in the management of age‐related macular degeneration. Curr Opin Ophthalmol 2018; 29: 217–225.
  • Dastiridou A, Chopra V. Potential applications of optical coherence tomography angiography in glaucoma. Curr Opin Ophthalmol 2018; 29: 226–233.
  • Lupidi M, Cerquaglia A, Chhablani J et al. Optical coherence tomography angiography in age‐related macular degeneration: the game changer. Eur J Ophthalmol 2018; 28: 349–357.
  • Van melkebeke L, Barbosa‐breda J, Huygens M et al. Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Res 2018; 60: 139–151.
  • Chansangpetch S, Lin SC. Optical coherence tomography angiography in glaucoma care. Curr Eye Res 2018; 43: 1067–1082.
  • Liu G, Jia Y, Pechauer AD et al. Split‐spectrum phase‐gradient optical coherence tomography angiography. Biomed Opt Express 2016; 7: 2943–2954.
  • Jia Y, Tan O, Tokayer J et al. Split‐spectrum amplitude‐decorrelation angiography with optical coherence tomography. Opt Express 2012; 20: 4710–4725.
  • Fang L, Li S, Nie Q et al. Sparsity based denoising of spectral domain optical coherence tomography images. Biomed Opt Express 2012; 3: 927–942.
  • Wong A, Mishra A, Bizheva K et al. General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. Opt Express 2010; 18: 8338–8352.
  • Frangi AF, Coatrieux JL, Peng GC et al. Editorial: special issue on multiscale modeling and analysis in computational biology and medicine‐‐part‐1. IEEE Trans Biomed Eng 2011; 58: 2936–2942.
  • Hendargo HC, Estrada R, Chiu SJ et al. Automated non‐rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography. Biomed Opt Express 2013; 4: 803–821.
  • Pan Y, You J, Volkow ND et al. Ultrasensitive detection of 3D cerebral microvascular network dynamics in vivo. Neuroimage 2014; 103: 492–501.
  • Tan B, Wong A, Bizheva K. Enhancement of morphological and vascular features in OCT images using a modified Bayesian residual transform. Biomed Opt Express 2018; 9: 2394–2406.
  • Zhang Q, Zhang A, Lee CS et al. Projection artifact removal improves visualization and quantitation of macular neovascularization imaged by optical coherence tomography angiography. Ophthalmol Retina 2017; 1: 124–136.
  • Wang J, Zhang M, Hwang TS et al. Reflectance‐based projection‐resolved optical coherence tomography angiography (invited). Biomed Opt Express 2017; 8: 1536–1548.
  • Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina 2015; 35: 2163–2180.
  • Ishikawa H, Stein DM, Wollstein G et al. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46: 2012–2017.
  • Koozekanani D, Boyer K, Roberts C. Retinal thickness measurements from optical coherence tomography using a Markov boundary model. IEEE Trans Med Imaging 2001; 20: 900–916.
  • Niu S, de Sisternes L, Chen Q et al. Automated geographic atrophy segmentation for SD‐OCT images using region‐based C‐V model via local similarity factor. Biomed Opt Express 2016; 7: 581–600.
  • Mujat M, Chan R, Cense B et al. Retinal nerve fiber layer thickness map determined from optical coherence tomography images. Opt Express 2005; 13: 9480–9491.
  • Gossage KW, Tkaczyk TS, Rodriguez JJ et al. Texture analysis of optical coherence tomography images: feasibility for tissue classification. J Biomed Opt 2003; 8: 570–575.
  • Zhu W, Zhang L, Shi F et al. Automated framework for intraretinal cystoid macular edema segmentation in three‐dimensional optical coherence tomography images with macular hole. J Biomed Opt 2017; 22: 76014.
  • Oliveira J, Pereira S, Goncalves L et al. Multi‐surface segmentation of OCT images with AMD using sparse high order potentials. Biomed Opt Express 2017; 8: 281–297.
  • Chiu SJ, Li XT, Nicholas P et al. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt Express 2010; 18: 19413–19428.
  • Hassan T, Akram MU, Hassan B et al. Automated segmentation of subretinal layers for the detection of macular edema. Appl Optics 2016; 55: 454–461.
  • Srinivasan PP, Kim LA, Mettu PS et al. Fully automated detection of diabetic macular edema and dry age‐related macular degeneration from optical coherence tomography images. Biomed Opt Express 2014; 5: 3568–3577.
  • Lang A, Carass A, Hauser M et al. Retinal layer segmentation of macular OCT images using boundary classification. Biomed Opt Express 2013; 4: 1133–1152.
  • Mcdonough K, Kolmanovsky I, Glybina IV. A neural network approach to retinal layer boundary identification from optical coherence tomography images. In: 2015 I.E. Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2015. pp. 1–8.
  • Venhuizen FG, van Ginneken B, Liefers B et al. Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks. Biomed Opt Express 2017; 8: 3292–3316.
  • Roy AG, Conjeti S, Karri SPK et al. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Opt Express 2017; 8: 3627–3642.
  • Sui X, Zheng Y, Wei B et al. Choroid segmentation from Optical Coherence Tomography with graph‐edge weights learned from deep convolutional neural networks. Neurocomputing 2017; 237: 332–341.
  • Fang L, Cunefare D, Wang C et al. Automatic segmentation of nine retinal layer boundaries in OCT images of non‐exudative AMD patients using deep learning and graph search. Biomed Opt Express 2017; 8: 2732–2744.
  • Chen FK, Viljoen RD, Bukowska DM. Classification of image artefacts in optical coherence tomography angiography of the choroid in macular diseases. Clin Experiment Ophthalmol 2016; 44: 388–399.
  • Ghasemi falavarjani K, Al‐sheikh M, Akil H et al. Image artefacts in swept‐source optical coherence tomography angiography. Br J Ophthalmol 2017; 101: 564–568.
  • Lauermann JL, Woetzel AK, Treder M et al. Prevalences of segmentation errors and motion artifacts in OCT‐angiography differ among retinal diseases. Graefes Arch Clin Exp Ophthalmol 2018; 256: 1807–1816.
  • Chua J, Lim CXY, Wong TY et al. Diabetic retinopathy in the Asia‐Pacific. Asia Pac J Ophthalmol (Phila) 2018; 7: 3–16.
  • Wu L, Fernandez‐loaiza P, Sauma J et al. Classification of diabetic retinopathy and diabetic macular edema. World J Diabetes 2013; 4: 290–294.
  • Ruia S, Saxena S, Gemmy cheung CM et al. Spectral domain optical coherence tomography features and classification systems for diabetic macular edema: a review. Asia Pac J Ophthalmol (Phila) 2016; 5: 360–367.
  • Scarinci F, Jampol LM, Linsenmeier RA et al. Association of diabetic macular nonperfusion with outer retinal disruption on optical coherence tomography. JAMA Ophthalmol 2015; 133: 1036–1044.
  • Scarinci F, Nesper PL, Fawzi AA. Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia. Am J Ophthalmol 2016; 168: 129–138.
  • Moon BG, Um T, Lee J et al. Correlation between deep capillary plexus perfusion and long‐term photoreceptor recovery after diabetic macular edema treatment. Ophthalmol Retina 2018; 2: 235–243.
  • Linsenmeier RA, Zhang HF. Retinal oxygen: from animals to humans. Prog Retin Eye Res 2017; 58: 115–151.
  • Moore J, Bagley S, Ireland G et al. Three dimensional analysis of microaneurysms in the human diabetic retina. J Anat 1999; 194 (Pt 1): 89–100.
  • Hasegawa N, Nozaki M, Takase N et al. New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema. Invest Ophthalmol Vis Sci 2016; 57: OCT348–OCT355.
  • Carnevali A, Sacconi R, Corbelli E et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol 2017; 54: 695–702.
  • Onishi AC, Nesper PL, Roberts PK et al. Importance of considering the middle capillary plexus on OCT angiography in diabetic retinopathy. Invest Ophthalmol Vis Sci 2018; 59: 2167–2176.
  • Spaide RF. Volume‐rendered optical coherence tomography of diabetic retinopathy pilot study. Am J Ophthalmol 2015; 160: 1200–1210.
  • Chua J, Chin CWL, Hong J et al. Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J Hypertens 2018; http://doi.org/10.1097/HJH.0000000000001916.
  • de Carlo TE, Salz DA, Waheed NK et al. Visualization of the retinal vasculature using wide‐field montage optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 2015; 46: 611–616.
  • Carl Zeiss Meditec AG. ZEISS receives the first US FDA Clearance for Swept‐Source OCT posterior ocular imaging with PLEX Elite 9000. 2016. Available at: https://www.zeiss.com/meditec/int/media‐news/press‐releases/‐us‐fda‐clearance‐for‐swept‐source‐oct‐posterior‐ocular‐imaging‐with‐plex‐elite‐9000.html
  • Kolb JP, Klein T, Kufner CL et al. Ultra‐widefield retinal MHz‐OCT imaging with up to 100-degrees viewing angle. Biomed Opt Express 2015; 6: 1534–1552.
  • Parravano M, De geronimo D, Scarinci F et al. Diabetic microaneurysms internal reflectivity on spectral‐domain optical coherence tomography and optical coherence tomography angiography detection. Am J Ophthalmol 2017; 179: 90–96.
  • Schreur V, Domanian A, Liefers B et al. Morphological and topographical appearance of microaneurysms on optical coherence tomography angiography. Br J Ophthalmol 2018; http://dx.doi.org/10.1136/bjophthalmol-2018-312258.
  • Ishibazawa A, Nagaoka T, Yokota H et al. Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2016; 57: 6247–6255.
  • Savastano MC, Federici M, Falsini B et al. Detecting papillary neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography. Acta Ophthalmol 2018; 96: 321–323.
  • Kang JW, Yoo R, Jo YH et al. Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion. Retina 2017; 37: 1700–1709.
  • Cicinelli MV, Rabiolo A, Marchese A et al. Choroid morphometric analysis in non‐neovascular age‐related macular degeneration by means of optical coherence tomography angiography. Br J Ophthalmol 2017; 101: 1193–1200.
  • Nesper PL, Soetikno BT, Fawzi AA. Choriocapillaris nonperfusion is associated with poor visual acuity in eyes with reticular pseudodrusen. Am J Ophthalmol 2017; 174: 42–55.
  • Choi W, Moult EM, Waheed NK et al. Ultrahigh‐speed, swept‐source optical coherence tomography angiography in nonexudative age‐related macular degeneration with geographic atrophy. Ophthalmology 2015; 122: 2532–2544.
  • Sacconi R, Corbelli E, Carnevali A et al. Optical coherence tomography angiography in geographic atrophy. Retina 2018; 38: 2350–2355.
  • Corbelli E, Sacconi R, Rabiolo A et al. Optical coherence tomography angiography in the evaluation of geographic atrophy area extension. Invest Ophthalmol Vis Sci 2017; 58: 5201–5208.
  • Liakopoulos S, Ongchin S, Bansal A et al. Quantitative optical coherence tomography findings in various subtypes of neovascular age‐related macular degeneration. Invest Ophthalmol Vis Sci 2008; 49: 5048–5054.
  • Kuehlewein L, Dansingani KK, de Carlo TE et al. Optical coherence tomography angiography of type 3 neovascularization secondary to age‐related macular degeneration. Retina 2015; 35: 2229–2235.
  • Costanzo E, Miere A, Querques G et al. Type 1 choroidal neovascularization lesion size: indocyanine green angiography versus optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2016; 57: OCT307–OCT313.
  • Farecki ML, Gutfleisch M, Faatz H et al. Characteristics of type 1 and 2 CNV in exudative AMD in OCT‐angiography. Graefes Arch Clin Exp Ophthalmol 2017; 255: 913–921.
  • Tanaka K, Mori R, Kawamura A et al. Comparison of OCT angiography and indocyanine green angiographic findings with subtypes of polypoidal choroidal vasculopathy. Br J Ophthalmol 2017; 101: 51–55.
  • Phasukkijwatana N, Tan ACS, Chen X et al. Optical coherence tomography angiography of type 3 neovascularisation in age‐related macular degeneration after antiangiogenic therapy. Br J Ophthalmol 2017; 101: 597–602.
  • Bhutto I, Lutty G. Understanding age‐related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. Mol Aspects Med 2012; 33: 295–317.
  • Wilde C, Patel M, Lakshmanan A et al. The diagnostic accuracy of spectral‐domain optical coherence tomography for neovascular age‐related macular degeneration: a comparison with fundus fluorescein angiography. Eye (Lond) 2015; 29: 602–609.
  • Gong J, Yu S, Gong Y et al. The diagnostic accuracy of optical coherence tomography angiography for neovascular age‐related macular degeneration: a comparison with fundus fluorescein angiography. J Ophthalmol 2016; 2016: 7521478.
  • Inoue M, Jung JJ, Balaratnasingam C et al. A comparison between optical coherence tomography angiography and fluorescein angiography for the imaging of type 1 neovascularization. Invest Ophthalmol Vis Sci 2016; 57: OCT314–OCT323.
  • Malamos P, Tsolkas G, Kanakis M et al. OCT‐angiography for monitoring and managing neovascular age‐related macular degeneration. Curr Eye Res 2017; 42: 1689–1697.
  • Nikolopoulou E, Lorusso M, Micelli ferrari L et al. Optical coherence tomography angiography versus dye angiography in age‐related macular degeneration: sensitivity and specificity analysis. Biomed Res Int 2018; 2018: 6724818.
  • Faridi A, Jia Y, Gao SS et al. Sensitivity and specificity of OCT angiography to detect choroidal neovascularization. Ophthalmol Retina 2017; 1: 294–303.
  • Novais EA, Adhi M, Moult EM et al. Choroidal neovascularization analyzed on ultrahigh‐speed swept‐source optical coherence tomography angiography compared to spectral‐domain optical coherence tomography angiography. Am J Ophthalmol 2016; 164: 80–88.
  • Miller AR, Roisman L, Zhang Q et al. Comparison between spectral‐domain and swept‐source optical coherence tomography angiographic imaging of choroidal neovascularization. Invest Ophthalmol Vis Sci 2017; 58: 1499–1505.
  • Zhang Q, Chen CL, Chu Z et al. Automated quantitation of choroidal neovascularization: a comparison study between spectral‐domain and swept‐source OCT angiograms. Invest Ophthalmol Vis Sci 2017; 58: 1506–1513.
  • Coscas GJ, Lupidi M, Coscas F et al. Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age‐related macular degeneration: a new diagnostic challenge. Retina 2015; 35: 2219–2228.
  • Sulzbacher F, Pollreisz A, Kaider A et al. Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography. Acta Ophthalmol 2017; 95: 414–420.
  • Lumbroso B, Rispoli M, Savastano MC. Longitudinal optical coherence tomography‐angiography study of type 2 naive choroidal neovascularization early response after treatment. Retina 2015; 35: 2242–2251.
  • Marques JP, Costa JF, Marques M et al. Sequential morphological changes in the CNV net after intravitreal anti‐VEGF evaluated with OCT angiography. Ophthalmic Res 2016; 55: 145–151.
  • Cherecheanu AP, Garhofer G, Schmidl D et al. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 2013; 13: 36–42.
  • Nakazawa T. Ocular blood flow and influencing factors for glaucoma. Asia Pac J Ophthalmol (Phila) 2016; 5: 38–44.
  • Geyman LS, Garg RA, Suwan Y et al. Peripapillary perfused capillary density in primary open‐angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol 2017; 101: 1261–1268.
  • Chihara E, Dimitrova G, Amano H et al. Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Invest Ophthalmol Vis Sci 2017; 58: 690–697.
  • Triolo G, Rabiolo A, Shemonski ND et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci 2017; 58: 5713–5722.
  • Shoji T, Zangwill LM, Akagi T et al. Progressive macula vessel density loss in primary open‐angle glaucoma: a longitudinal study. Am J Ophthalmol 2017; 182: 107–117.
  • Wang X, Jiang C, Ko T et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open‐angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 2015; 253: 1557–1564.
  • Rao HL, Pradhan ZS, Weinreb RN et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open‐angle glaucoma. Am J Ophthalmol 2016; 171: 75–83.
  • Kiyota N, Kunikata H, Takahashi S et al. Factors associated with deep circulation in the peripapillary chorioretinal atrophy zone in normal‐tension glaucoma with myopic disc. Acta Ophthalmol 2018; 96: e290–e297.
  • Hayreh SS. The blood supply of the optic nerve head and the evaluation of it ‐ myth and reality. Prog Retin Eye Res 2001; 20: 563–593.
  • Yang H, Reynaud J, Lockwood H et al. The connective tissue phenotype of glaucomatous cupping in the monkey eye ‐ clinical and research implications. Prog Retin Eye Res 2017; 59: 1–52.
  • Schmidl D, Garhofer G, Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow ‐ relevance for glaucoma. Exp Eye Res 2011; 93: 141–155.
  • Shin JW, Sung KR, Uhm KB et al. Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open‐angle glaucoma. Invest Ophthalmol Vis Sci 2017; 58: 5993–5999.
  • Alnawaiseh M, Muller V, Lahme L et al. Changes in flow density measured using optical coherence tomography angiography after iStent insertion in combination with phacoemulsification in patients with open‐angle glaucoma. J Ophthalmol 2018; 2018: 2890357.
  • Schmidl D, Schmetterer L, Garhofer G et al. Pharmacotherapy of glaucoma. J Ocul Pharmacol Ther 2015; 31: 63–77.
  • Fard MA, Jalili J, Sahraiyan A et al. Optical coherence tomography angiography in optic disc swelling. Am J Ophthalmol 2018; 191: 116–123.
  • Cennamo G, Tebaldi S, Amoroso F et al. Optical coherence tomography angiography in optic nerve drusen. Ophthalmic Res 2018; 59: 76–80.
  • Sharma S, Ang M, Najjar RP et al. Optical coherence tomography angiography in acute non‐arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol 2017; 101: 1045–1051.
  • Liu CH, Kao LY, Sun MH et al. Retinal vessel density in optical coherence tomography angiography in optic atrophy after nonarteritic anterior ischemic optic neuropathy. J Ophthalmol 2017; 2017: 9632647.
  • Augstburger E, Zeboulon P, Keilani C et al. Retinal and choroidal microvasculature in nonarteritic anterior ischemic optic neuropathy: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci 2018; 59: 870–877.
  • Wang X, Jia Y, Spain R et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol 2014; 98: 1368–1373.
  • Higashiyama T, Nishida Y, Ohji M. Optical coherence tomography angiography in eyes with good visual acuity recovery after treatment for optic neuritis. PLoS One 2017; 12: e0172168.
  • Fard MA, Suwan Y, Moghimi S et al. Pattern of peripapillary capillary density loss in ischemic optic neuropathy compared to that in primary open‐angle glaucoma. PLoS One 2018; 13: e0189237.
  • Ang M, Devarajan K, Das S et al. Comparison of anterior segment optical coherence tomography angiography systems for corneal vascularisation. Br J Ophthalmol 2018; 102: 873–877.
  • Ang M, Sim DA, Keane PA et al. Optical coherence tomography angiography for anterior segment vasculature imaging. Ophthalmology 2015; 122: 1740–1747.
  • Ang M, Cai Y, Tan AC. Swept source optical coherence tomography angiography for contact lens‐related corneal vascularization. J Ophthalmol 2016; 2016: 9685297.
  • Cai Y, Alio del barrio JL, Wilkins MR et al. Serial optical coherence tomography angiography for corneal vascularization. Graefes Arch Clin Exp Ophthalmol 2017; 255: 135–139.
  • Ang M, Baskaran M, Werkmeister RM et al. Anterior segment optical coherence tomography. Prog Retin Eye Res 2018; 66: 132–156.
  • Stanzel TP, Devarajan K, Lwin NC et al. Comparison of optical coherence tomography angiography to Indocyanine green angiography and slit lamp photography for corneal vascularization in an animal model. Sci Rep 2018; 8: 11493.
  • Cursiefen C, Colin J, Dana R et al. Consensus statement on indications for anti‐angiogenic therapy in the management of corneal diseases associated with neovascularisation: outcome of an expert roundtable. Br J Ophthalmol 2012; 96: 3–9.
  • Ang M, Cai Y, Macphee B et al. Optical coherence tomography angiography and indocyanine green angiography for corneal vascularisation. Br J Ophthalmol 2016; 100: 1557–1563.
  • Kirwan RP, Zheng Y, Tey A et al. Quantifying changes in corneal neovascularization using fluorescein and indocyanine green angiography. Am J Ophthalmol 2012; 154: 850–858.e2.
  • Ang M, Cai Y, Shahipasand S et al. En face optical coherence tomography angiography for corneal neovascularisation. Br J Ophthalmol 2016; 100: 616–621.
  • de Oliveira dias JR, Zhang Q, Garcia JMB et al. Natural history of subclinical neovascularization in nonexudative age‐related macular degeneration using swept‐source OCT angiography. Ophthalmology 2018; 125: 255–266.
  • Holz FG, Sadda SR, Staurenghi G et al. Imaging protocols in clinical studies in advanced age‐related macular degeneration: recommendations from classification of atrophy consensus meetings. Ophthalmology 2017; 124: 464–478.
  • Shin JW, Kwon J, Lee J et al. Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia. Br J Ophthalmol 2018; bjophthalmol‐2018‐312085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.