81
Views
5
CrossRef citations to date
0
Altmetric
Invited Review

Optical coherence tomography in the investigation of systemic neurologic disease

, PhD & , AC DSc PhD
Pages 309-319 | Received 20 Mar 2018, Accepted 28 Oct 2018, Published online: 15 Apr 2021

REFERENCES

  • Snijders AH, Van de warrenburg BP, Giladi N et al. Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol 2007; 6: 63–74.
  • Drachman DA. Ophthalmoplegia plus: the neurodegenerative disorders associated with progressive external ophthalmoplegia. Arch Neurol 1968; 18: 654–674.
  • Waite LM, Broe GA, Creasey H et al. Neurodegenerative and other chronic disorders among people aged 75 years and over in the community. Med J Aust 1997; 167: 429–432.
  • Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science 1991; 254: 1178–1181.
  • Jafri MS, Farhang S, Tang RS et al. Optical coherence tomography in the diagnosis and treatment of neurological disorders. J Biomed Opt 2005; 10: 051603.
  • Normando EM, Davis BM, De groef L et al. The retina as an early biomarker of neurodegeneration in a rotenone‐induced model of Parkinson's disease: evidence for a neuroprotective effect of rosiglitazone in the eye and brain. Acta Neuropathol Commun 2016; 4: 86.
  • Harnois C, Di paolo T. Decreased dopamine in the retinas of patients with Parkinson's disease. Invest Ophthalmol Vis Sci 1990; 31: 2473–2475.
  • Tian T, Zhu XH, Liu YH. Potential role of retina as a biomarker for progression of Parkinson's disease. Int J Ophthalmol 2011; 4: 433–438.
  • Nguyen‐legros J. Functional neuroarchitecture of the retina: hypothesis on the dysfunction of retinal dopaminergic circuitry in Parkinson's disease. Surg Radiol Anat 1988; 10: 137–144.
  • Satue M, Obis J, Alarcia R et al. Retinal and choroidal changes in patients with Parkinson's disease detected by swept‐source optical coherence tomography. Curr Eye Res 2018; 43: 109–115.
  • Ucak T, Alagoz A, Cakir B et al. Analysis of the retinal nerve fiber and ganglion cell ‐ inner plexiform layer by optical coherence tomography in Parkinson's patients. Parkinsonism Relat Disord 2016; 31: 59–64.
  • Inzelberg R, Ramirez JA, Nisipeanu P et al. Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 2004; 44: 2793–2797.
  • Hajee ME, March WF, Lazzaro DR et al. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 2009; 127: 737–741.
  • La morgia C, Di vito L, Carelli V et al. Patterns of retinal ganglion cell damage in neurodegenerative disorders: parvocellular vs magnocellular degeneration in optical coherence tomography studies. Front Neurol 2017; 8: 710.
  • Bittersohl D, Stemplewitz B, Keseru M et al. Detection of retinal changes in idiopathic Parkinson's disease using high‐resolution optical coherence tomography and Heidelberg retina tomography. Acta Ophthalmol 2015; 93: e578–e584.
  • Garcia‐martin E, Satue M, Otin S et al. Retina measurements for diagnosis of Parkinson disease. Retina 2014; 34: 971–980.
  • Altintas O, Iseri P, Ozkan B et al. Correlation between retinal morphological and functional findings and clinical severity in Parkinson's disease. Doc Ophthalmol 2008; 116: 137–146.
  • Pilat A, Mclean RJ, Proudlock FA et al. In vivo morphology of the optic nerve and retina in patients with parkinson's disease. Invest Ophthalmol Vis Sci 2016; 57: 4420–4427.
  • Unlu M, Gulmez sevim D, Gultekin M et al. Correlations among multifocal electroretinography and optical coherence tomography findings in patients with Parkinson's disease. Neurol Sci 2018; 39: 533–541.
  • Chorostecki J, Seraji‐bozorgzad N, Shah A et al. Characterization of retinal architecture in Parkinson's disease. J Neurol Sci 2015; 355: 44–48.
  • Slotnick S, Ding Y, Glazman S et al. A novel retinal biomarker for Parkinson's disease: quantifying the foveal pit with optical coherence tomography. Mov Disord 2015; 30: 1692–1695.
  • Miri S, Shrier EM, Glazman S et al. The avascular zone and neuronal remodeling of the fovea in Parkinson disease. Ann Clin Transl Neurol 2015; 2: 196–201.
  • Garcia‐martin E, Pablo LE, Bambo MP et al. Comparison of peripapillary choroidal thickness between healthy subjects and patients with Parkinson's disease. PLoS One 2017; 12: e0177163.
  • Price MJ, Feldman RG, Adelberg D et al. Abnormalities in color vision and contrast sensitivity in Parkinson's disease. Neurology 1992; 42: 887–890.
  • El beltagi TA, Bowd C, Boden C et al. Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes. Ophthalmology 2003; 110: 2185–2191.
  • Huang J, Li Y, Xiao J et al. Combination of multifocal electroretinogram and spectral‐domain OCT can increase diagnostic efficacy of Parkinson's disease. Parkinsons Dis 2018; 2018: 4163239.
  • Miri S, Glazman S, Mylin L et al. A combination of retinal morphology and visual electrophysiology testing increases diagnostic yield in Parkinson's disease. Parkinsonism Relat Disord 2016; 22 (Suppl 1): S134–S137.
  • Garcia‐martin E, Rodriguez‐mena D, Satue M et al. Electrophysiology and optical coherence tomography to evaluate parkinson disease severity. Invest Ophthalmol Vis Sci 2014; 55: 696–705.
  • Satue M, Rodrigo MJ, Obis J et al. Evaluation of progressive visual dysfunction and retinal degeneration in patients with Parkinson's disease. Invest Ophthalmol Vis Sci 2017; 58: 1151–1157.
  • Hasanov S, Demirkilinc biler E, Acarer A et al. Functional and morphological assessment of ocular structures and follow‐up of patients with early‐stage Parkinson's disease. Int Ophthalmol 2018; https://doi.org/10.1007/s10792-018-0934-y.
  • Butt AM, Pugh M, Hubbard P et al. Functions of optic nerve glia: axoglial signalling in physiology and pathology. Eye (Lond) 2004; 18: 1110–1121.
  • Costello F, Coupland S, Hodge W et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006; 59: 963–969.
  • Costello F, Hodge W, Pan YI et al. Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography. Mult Scler 2008; 14: 893–905.
  • Noval S, Contreras I, Rebolleda G et al. Optical coherence tomography versus automated perimetry for follow‐up of optic neuritis. Acta Ophthalmol Scand 2006; 84: 790–794.
  • Bertuzzi F, Suzani M, Tagliabue E et al. Diagnostic validity of optic disc and retinal nerve fiber layer evaluations in detecting structural changes after optic neuritis. Ophthalmology 2010; 117: 1256–1264.e1.
  • Birkeldh U, Manouchehrinia A, Hietala MA et al. The temporal retinal nerve fiber layer thickness is the most important optical coherence tomography estimate in multiple sclerosis. Front Neurol 2017; 8: 675.
  • Abalo‐lojo JM, Treus A, Arias M et al. Longitudinal study of retinal nerve fiber layer thickness changes in a multiple sclerosis patients cohort: a long term 5 year follow‐up. Mult Scler Relat Disord 2017; 19: 124–128.
  • Zehnder S, Wildberger H, Hanson JVM et al. Retinal ganglion cell topography in patients with visual pathway pathology. J Neuroophthalmol 2018; 38: 172–178.
  • Klistorner A, Graham EC, Yiannikas C et al. Progression of retinal ganglion cell loss in multiple sclerosis is associated with new lesions in the optic radiations. Eur J Neurol 2017; 24: 1392–1398.
  • de Carlo TE, Romano A, Waheed NK et al. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 2015; 1: 5.
  • Britze J, Frederiksen JL. Optical coherence tomography in multiple sclerosis. Eye (Lond) 2018; 32: 884–888.
  • Hanson JV, Lukas SC, Pless M et al. Optical coherence tomography in multiple sclerosis. Semin Neurol 2016; 36: 177–184.
  • Cadavid D, Balcer L, Galetta S et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo‐controlled, phase 2 trial. Lancet Neurol 2017; 16: 189–199.
  • Burkholder BM, Osborne B, Loguidice MJ et al. Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch Neurol 2009; 66: 1366–1372.
  • Khanifar AA, Parlitsis GJ, Ehrlich JR et al. Retinal nerve fiber layer evaluation in multiple sclerosis with spectral domain optical coherence tomography. Clin Ophthalmol 2010; 4: 1007–1013.
  • Evangelou N, Konz D, Esiri MM et al. Size‐selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain 2001; 124: 1813–1820.
  • Hagag AM, Gao SS, Jia Y et al. Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol 2017; 7: 115–129.
  • Savastano MC, Lumbroso B, Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina 2015; 35: 2196–2203.
  • Feucht N, Maier M, Lepennetier G et al. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis. Mult Scler 2018: 1352458517750009.
  • Serrano‐pozo A, Frosch MP, Masliah E et al. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1: a006189.
  • Lim JK, Li Q‐X, He Z et al. The eye as a biomarker for Alzheimer's disease. Front Neurosci 2016; 10: 536.
  • Doustar J, Torbati T, Black KL et al. Optical coherence tomography in Alzheimer's disease and other neurodegenerative diseases. Front Neurol 2017; 8: 701.
  • Paquet C, Boissonnot M, Roger F et al. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer's disease. Neurosci Lett 2007; 420: 97–99.
  • Parisi V, Restuccia R, Fattapposta F et al. Morphological and functional retinal impairment in Alzheimer's disease patients. Clin Neurophysiol 2001; 112: 1860–1867.
  • Polo V, Rodrigo MJ, Garcia‐martin E et al. Visual dysfunction and its correlation with retinal changes in patients with Alzheimer's disease. Eye (Lond) 2017; 31: 1034–1041.
  • Kirbas S, Turkyilmaz K, Anlar O et al. Retinal nerve fiber layer thickness in patients with Alzheimer disease. J Neuroophthalmol 2013; 33: 58–61.
  • Cunha JP, Proenca R, Dias‐santos A et al. OCT in Alzheimer's disease: thinning of the RNFL and superior hemiretina. Graefes Arch Clin Exp Ophthalmol 2017; 255: 1827–1835.
  • Gunes A, Demirci S, Tok L et al. Evaluation of retinal nerve fiber layer thickness in Alzheimer disease using spectral‐domain optical coherence tomography. Turk J Med Sci 2015; 45: 1094–1097.
  • Kwon JY, Yang JH, Han JS et al. Analysis of the retinal nerve fiber layer thickness in Alzheimer disease and mild cognitive impairment. Korean J Ophthalmol 2017; 31: 548–556.
  • Pillai JA, Bermel R, Bonner‐jackson A et al. Retinal nerve fiber layer thinning in Alzheimer's disease: a case‐control study in comparison to normal aging, Parkinson's disease, and non‐Alzheimer's dementia. Am J Alzheimers Dis Other Demen 2016; 31: 430–436.
  • Thomson KL, Yeo JM, Waddell B et al. A systematic review and meta‐analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography. Alzheimers Dement (Amst) 2015; 1: 136–143.
  • Choi SH, Park SJ, Kim NR. Macular ganglion cell ‐inner plexiform layer thickness is associated with clinical progression in mild cognitive impairment and alzheimers disease. PLoS One 2016; 11: e0162202.
  • den Haan J, Balk LJ, Verbraak FD. Ganglion cell layer measurements correlate with disease severity in patients with Alzheimer's disease. Acta Ophthalmol 2018; 96: 265–266.
  • Garcia‐martin E, Bambo MP, Marques ML et al. Ganglion cell layer measurements correlate with disease severity in patients with Alzheimer's disease. Acta Ophthalmol 2016; 94: e454–e459.
  • Iseri PK, Altinas O, Tokay T et al. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol 2006; 26: 18–24.
  • Gao L, Liu Y, Li X et al. Abnormal retinal nerve fiber layer thickness and macula lutea in patients with mild cognitive impairment and Alzheimer's disease. Arch Gerontol Geriatr 2015; 60: 162–167.
  • Salobrar‐garcia E, Hoyas I, Leal M et al. Analysis of retinal peripapillary segmentation in early Alzheimer's disease patients. Biomed Res Int 2015; 2015: 636548.
  • Petersen RC, Smith GE, Waring SC et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56: 303–308.
  • Grundman M, Petersen RC, Ferris SH et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 2004; 61: 59–66.
  • Coppola G, Di renzo A, Ziccardi L et al. Optical coherence tomography in Alzheimer's disease: a meta‐analysis. PLoS One 2015; 10: e0134750.
  • Kesler A, Vakhapova V, Korczyn AD et al. Retinal thickness in patients with mild cognitive impairment and Alzheimer's disease. Clin Neurol Neurosurg 2011; 113: 523–526.
  • Ascaso FJ, Cruz N, Modrego PJ et al. Retinal alterations in mild cognitive impairment and Alzheimer's disease: an optical coherence tomography study. J Neurol 2014; 261: 1522–1530.
  • Knoll B, Simonett J, Volpe NJ et al. Retinal nerve fiber layer thickness in amnestic mild cognitive impairment: case‐control study and meta‐analysis. Alzheimers Dement (Amst) 2016; 4: 85–93.
  • Fletcher EL, Downie LE, Ly A et al. A review of the role of glial cells in understanding retinal disease. Clin Exp Optom 2008; 91: 67–77.
  • Jiang H, Wei Y, Shi Y et al. Altered macular microvasculature in mild cognitive impairment and Alzheimer disease. J Neuroophthalmol 2018; 38: 292–298.
  • Weinhaus RS, Burke JM, Delori FC et al. Comparison of fluorescein angiography with microvascular anatomy of macaque retinas. Exp Eye Res 1995; 61: 1–16.
  • Bulut M, Yaman A, Erol MK et al. Choroidal thickness in patients with mild cognitive impairment and Alzheimer's type dementia. J Ophthalmol 2016; 2016: 7291257.
  • Cunha JP, Proença R, Dias‐santos A et al. Choroidal thinning: Alzheimer's disease and aging. Alzheimers Dement (Amst) 2017; 8: 11–17.
  • Freiberg FJ, Pfau M, Wons J et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2016; 254: 1051–1058.
  • Cunha LP, Almeida AL, Costa‐cunha LV et al. The role of optical coherence tomography in Alzheimer's disease. Int J Retina Vitreous 2016; 2: 24.
  • Oktem EO, Derle E, Kibaroglu S et al. The relationship between the degree of cognitive impairment and retinal nerve fiber layer thickness. Neurol Sci 2015; 36: 1141–1146.
  • Garcia‐martin E, Pueyo V, Martin J et al. Progressive changes in the retinal nerve fiber layer in patients with multiple sclerosis. Eur J Ophthalmol 2010; 20: 167–173.
  • Herrero R, Garcia‐martin E, Almarcegui C et al. Progressive degeneration of the retinal nerve fiber layer in patients with multiple sclerosis. Invest Ophthalmol Vis Sci 2012; 53: 8344–8349.
  • Malik RA, Tesfaye S, Ziegler D. Medical strategies to reduce amputation in patients with type 2 diabetes. Diabet Med 2013; 30: 893–900.
  • Efron N. The Glenn A. Fry Award Lecture 2010: Ophthalmic markers of diabetic neuropathy. Optom Vis Sci 2011; 88: 661–683.
  • Shahidi AM, Sampson GP, Pritchard N et al. Retinal nerve fibre layer thinning associated with diabetic peripheral neuropathy. Diabet Med 2012; 29: e106–e111.
  • Srinivasan S, Pritchard N, Vagenas D et al. Retinal tissue thickness is reduced in diabetic peripheral neuropathy. Curr Eye Res 2016; 41: 1359–1366.
  • Srinivasan S, Pritchard N, Sampson GP et al. Focal loss volume of ganglion cell complex in diabetic neuropathy. Clin Exp Optom 2016; 99: 526–534.
  • Tan O, Chopra V, Lu AT et al. Detection of macular ganglion cell loss in glaucoma by Fourier‐domain optical coherence tomography. Ophthalmology 2009; 116: 2305–2314.e1–2
  • Salvi L, Plateroti P, Balducci S et al. Abnormalities of retinal ganglion cell complex at optical coherence tomography in patients with type 2 diabetes: a sign of diabetic polyneuropathy, not retinopathy. J Diabetes Complications 2016; 30: 469–476.
  • Hegazy AI, Zedan RH, Macky TA et al. Retinal ganglion cell complex changes using spectral domain optical coherence tomography in diabetic patients without retinopathy. Int J Ophthalmol 2017; 10: 427–433.
  • Kim K, Yu SY, Kwak HW et al. Retinal neurodegeneration associated with peripheral nerve conduction and autonomic nerve function in diabetic patients. Am J Ophthalmol 2016; 170: 15–24.
  • Srinivasan S, Pritchard N, Sampson GP et al. Diagnostic capability of retinal thickness measures in diabetic peripheral neuropathy. J Optom 2017; 10: 215–225.
  • Kim JH, Lee MW, Byeon SH et al. Associations between individual retinal layer thicknesses and diabetic peripheral neuropathy using retinal layer segmentation analysis. Retina 2018; 38: 2190–2196.
  • Choi JA, Kim HW, Kwon JW et al. Early inner retinal thinning and cardiovascular autonomic dysfunction in type 2 diabetes. PLoS One 2017; 12: e0174377.
  • Pemp B, Palkovits S, Howorka K et al. Correlation of retinal neurodegeneration with measures of peripheral autonomic neuropathy in type 1 diabetes. Acta Ophthalmol 2018; https://doi.org/10.1111/aos.13733.
  • Neriyanuri S, Pardhan S, Gella L et al. Retinal sensitivity changes associated with diabetic neuropathy in the absence of diabetic retinopathy. Br J Ophthalmol 2017; 101: 1174–1178.
  • Dehghani C, Srinivasan S, Edwards K et al. Presence of peripheral neuropathy is associated with progressive thinning of retinal nerve fiber layer in type 1 diabetes. Invest Ophthalmol Vis Sci 2017; 58: BIO234–BIO239.
  • Srinivasan S, Dehghani C, Pritchard N et al. Optical coherence tomography predicts 4‐year incident diabetic neuropathy. Ophthalmic Physiol Opt 2017; 37: 451–459.
  • Cunha‐vaz JG. Diabetic retinopathy: need for more research to understand the relative role of neuropathy and microvascular disease. Ophthalmic Res 2015; 54: 109–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.