46
Views
2
CrossRef citations to date
0
Altmetric
Research

Intraocular pressure changes in eyes with small incision lenticules and laser in situ keratomileusis

, , &
Pages 399-405 | Received 13 Feb 2018, Accepted 29 Oct 2018, Published online: 15 Apr 2021

REFERENCES

  • Gimbel HV, Levy SG. Indications, results, and complications of LASIK. Curr Opin Ophthalmol 1998; 9: 3–8.
  • Sugar A, Rapuano CJ, Culbertson WW et al. Laser in situ keratomileusis for myopia and astigmatism: safety and efficacy: a report by the American Academy of Ophthalmology. Ophthalmology 2002; 109: 175–187.
  • Tsai ASH, Loon SC. Intraocular pressure assessment after laser in situ keratomileusis: a review. Clin Exp Ophthalmol 2012; 40: 295–304.
  • Dupps WJ Jr, Wilson SE. Biomechanics and wound healing in the cornea. Exp Eye Res 2006; 83: 709–720.
  • Lee JK, Chuck RS, Park CY. Femtosecond laser refractive surgery: small‐incision lenticule extraction vs. femtosecond laser‐assisted LASIK. Curr Opin Ophthalmol 2015; 26: 260–264.
  • Li M, Niu L, Qin B et al. Confocal comparison of corneal reinnervation after small incision lenticule extraction (SMILE) and femtosecond laser in situ keratomileusis (FS‐LASIK). PLoS One 2013; 8: e81435.
  • Wang B, Naidu RK, Chu R et al. Dry eye disease following refractive surgery: a 12‐month follow‐up of SMILE versus FS‐LASIK in high myopia. J Ophthalmol 2015; 2015: 132417.
  • Shah R, Shah S, Sengupta S. Results of small incision lenticule extraction: all‐in‐one femtosecond laser refractive surgery. J Cataract Refract Surg 2011; 37: 127–137.
  • Mysore N, Krueger R. Advances in refractive surgery: May 2013 to June 2014. Asia Pac J Ophthalmol (Phila) 2015; 4: 112–120.
  • Leccisotti A, Fields SV, Moore J et al. Changes in ocular biomechanics after femtosecond laser creation of a laser in situ keratomileusis flap. J Cataract Refract Surg 2016; 42: 127–131.
  • Osman IM, Helaly HA, Abdalla M et al. Corneal biomechanical changes in eyes with small incision lenticule extraction and laser assisted in situ keratomileusis. BMC Ophthalmol 2016; 16: 123.
  • Chen KJ, Joda A, Vinciguerra R et al. Clinical evaluation of a new correction algorithm for dynamic Scheimpflug analyzer tonometry before and after laser in situ keratomileusis and small‐incision lenticule extraction. J Cataract Refract Surg 2018; 44: 581–588.
  • Wang D, Liu M, Chen Y et al. Differences in the corneal biomechanical changes after SMILE and LASIK. J Refract Surg 2014; 30: 702–707.
  • Sefat SM, Wiltfang R, Bechmann M et al. Evaluation of changes in human corneas after femtosecond laser‐assisted LASIK and small‐incision Lenticule extraction (SMILE) using non‐contact tonometry and ultra‐high‐speed camera (Corvis ST). Curr Eye Res 2016; 41: 917–922.
  • Li H, Wang Y, Dou R et al. Intraocular pressure changes and relationship with corneal biomechanics after SMILE and FS‐LASIK. Invest Ophthalmol Vis Sci 2016; 57: 4180–4186.
  • Elmallah MK, Asrani SG. New ways to measure intraocular pressure. Curr Opin Ophthalmol 2008; 19: 122–126.
  • Shields MB. The non‐contact tonometer. Its value and limitations. Surv Ophthalmol 1980; 24: 211–219.
  • Chihara E, Takahashi H, Okazaki K et al. The preoperative intraocular pressure level predicts the amount of underestimated intraocular pressure after LASIK for myopia. Br J Ophthalmol 2005; 89: 160–164.
  • Terai N, Raiskup F, Haustein M et al. Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res 2012; 37: 553–562.
  • Shih PJ, Cao HJ, Huang CJ et al. A corneal elastic dynamic model derived from Scheimpflug imaging technology. Ophthalmic Physiol Opt 2015; 35: 663–672.
  • Shih PJ, Huang CJ, Huang TH et al. Estimation of the corneal Young's modulus in vivo based on a fluid‐filled spherical‐Shell model with Scheimpflug imaging. J Ophthalmol 2017; 2017: 5410143.
  • Scarcelli G, Besner S, Pineda R et al. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest Ophthalmol Vis Sci 2014; 55: 4490–4495.
  • Guirao A. Theoretical elastic response of the cornea to refractive surgery: risk factors for keratectasia. J Refract Surg 2005; 21: 176–185.
  • Roberts CJ, Dupps WJ, Jr. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg 2014; 40: 991–998.
  • Last JA, Thomasy SM, Croasdale CR et al. Compliance profile of the human cornea as measured by atomic force microscopy. Micron 2012; 43: 1293–1298.
  • Elsheikh A. Finite element modeling of corneal biomechanical behavior. J Refract Surg 2010; 26: 289–300.
  • Nejad TM, Foster C, Gongal D. Finite element modelling of cornea mechanics: a review. Arq Bras Oftalmol 2014; 77: 60–65.
  • Coquart L, Depeursinge C, Curnier A et al. A fluid‐structure interaction problem in biomechanics ‐ prestressed vibrations of the eye by the finite‐element method. J Biomech 1992; 25: 1105–1118.
  • Salimi S, Park SS, Freiheit T. Dynamic response of intraocular pressure and biomechanical effects of the eye considering fluid‐structure interaction. J Biomech Eng 2011; 133: 091009.
  • Kling S, Bekesi N, Dorronsoro C et al. Corneal viscoelastic properties from finite‐element analysis of in vivo air‐puff deformation. PLoS One 2014; 9: e104904.
  • Kling S, Akca IB, Chang EW et al. Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties. J R Soc Interface 2014; 11: 20140920.
  • Simonini I, Pandolfi A. The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests. J Mech Behav Biomed Mater 2016; 58: 75–89.
  • Shih PJ, Guo YR. Resonance frequency of fluid‐filled and prestressed spherical shell‐A model of the human eyeball. J Acoust Soc Am 2016; 139: 1784–1792.
  • Yakhot V, Orszag SA, Thangam S et al. Development of turbulence models for shear flows by a double expansion technique. Phys Fluid Fluid Dynam 1992; 4: 1510–1520.
  • Schallhorn JM, Schallhorn SC, Ou Y. Factors that influence intraocular pressure changes after myopic and hyperopic LASIK and photorefractive keratectomy: a large population study. Ophthalmology 2015; 122: 471–479.
  • Desai S, Schallhorn J, Schallhorn S et al. Intraocular Pressure and Central Corneal Thickness in 91,000 Patients. Seattle, Washington: The Association for Research in Vision and Ophthalmology, 2013. p. 5639.
  • Pinsky PM, van der Heide D, Chernyak D. Computational modeling of mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg 2005; 31: 136–145.
  • Shih PJ, Wang IJ, Cai WF et al. Biomechanical simulation of stress concentration and intraocular pressure in corneas subjected to myopic refractive surgical procedures. Sci Rep 2017; 7: 13906.
  • Elsheikh A, Wang DF, Pye D. Determination of the modulus of elasticity of the human cornea. J Refract Surg 2007; 23: 808–818.
  • Okafor KC, Brandt JD. Measuring intraocular pressure. Curr Opin Ophthalmol 2015; 26: 103–109.
  • Cheng W, Liu L, Yu S et al. Real‐time intraocular pressure measurements in the vitreous chamber of rabbit eyes during small incision Lenticule extraction (SMILE). Curr Eye Res 2018; 43: 1260–1266.
  • Montanino A, Angelillo M, Pandolfi A. Modelling with a meshfree approach the cornea‐aqueous humor interaction during the air puff test. J Mech Behav Biomed Mater 2018; 77: 205–216.
  • Montanino A, Asprone D, Reali A et al. Modified finite particle methods for stokes problems. Comput Part Mech 2018; 5: 141–160.
  • Asprone D, Auricchio F, Montanino A et al. A modified finite particle method: multi‐dimensional elasto‐statics and dynamics. Int J Numer Methods Eng 2014; 99: 1–25.
  • Karimi A, Razaghi R, Biglari H et al. A comparative study to determine the optimal intravitreal injection angle to the eye: a computational fluid‐structure interaction model. Technol Health Care 2018; 26: 483–498.
  • Uchio E, Ohno S, Kudoh J et al. Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol 1999; 83: 1106–1111.
  • Karimi A, Razaghi R, Biglari H et al. Collision of the glass shards with the eye: a computational fluid‐structure interaction model. J Chem Neuroanat 2018; 90: 80–86.
  • Orssengo GJ, Pye DC. Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo. Bull Math Biol 1999; 61: 551–572.
  • Karimi A, Razaghi R, Navidbakhsh M et al. Computing the influences of different intraocular pressures on the human eye components using computational fluid‐structure interaction model. Technol Health Care 2017; 25: 285–297.
  • Elsheikh A, Wang D, Kotecha A et al. Evaluation of Goldmann applanation tonometry using a nonlinear finite element ocular model. Ann Biomed Eng 2006; 34: 1628–1640.
  • Weaver AA, Kennedy EA, Duma SM et al. Evaluation of different projectiles in matched experimental eye impact simulations. J Biomech Eng 2011; 133: 031002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.