238
Views
4
CrossRef citations to date
0
Altmetric
Invited Review

Optical coherence tomography imaging in keratoconus

, MBBS & , FRANZCO
Pages 218-223 | Received 02 Jun 2018, Accepted 01 Jan 2019, Published online: 15 Apr 2021

REFERENCES

  • Li X, Rabinowitz YS, Rasheed K et al. Longitudinal study of the normal eyes in unilateral keratoconus patients. Ophthalmology 2004; 111: 440–446.
  • Gomes JA, Tan D, Rapuano CJ et al. Global consensus on keratoconus and ectatic diseases. Cornea 2015; 34: 359–369.
  • Maeda N, Klyce SD, Smolek MK. Comparison of methods for detecting keratoconus using videokeratography. Arch Ophthalmol 1995; 113: 870–874.
  • Karnowski K, Kaluzny BJ, Szkulmowski M et al. Corneal topography with high‐speed swept source OCT in clinical examination. Biomed Opt Express 2011; 2: 2709–2720.
  • Ensing R, de Lang F, de Vries H et al. Clinical validation of the Cassini color LED corneal topography (CLCT) in post penetrating keratoplasty (PKP). Investig Ophthalmol Vis Sci 2013; 54: 528.
  • Ambrosio R Jr, Dawson DG, Salomao M et al. Corneal ectasia after LASIK despite low preoperative risk: tomographic and biomechanical findings in the unoperated, stable, fellow eye. J Refract Surg 2010; 26: 906–911.
  • Binder PS, Lindstrom RL, Stulting RD et al. Keratoconus and corneal ectasia after LASIK. J Cataract Refract Surg 2005; 31: 2035–2038.
  • Li Y, Shekhar R, Huang D. Corneal pachymetry mapping with high‐speed optical coherence tomography. Ophthalmology 2006; 113: 792–799.e2.
  • Ge L, Yuan Y, Shen M et al. The role of axial resolution of optical coherence tomography on the measurement of corneal and epithelial thicknesses. Invest Ophthalmol Vis Sci 2013; 54: 746–755.
  • Prakash G, Agarwal A, Mazhari AI et al. Reliability and reproducibility of assessment of corneal epithelial thickness by fourier domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53: 2580–2585.
  • Li Y, Tan O, Brass R et al. Corneal epithelial thickness mapping by Fourier‐domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology 2012; 119: 2425–2433.
  • Xu BY, Mai DD, Penteado RC et al. Reproducibility and agreement of anterior segment parameter measurements obtained using the CASIA2 and Spectralis OCT2 optical coherence tomography devices. J Glaucoma 2017; 26: 974–979.
  • Prospero ponce CM, Rocha KM, Smith SD et al. Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus‐suspect, and post‐laser in situ keratomileusis eyes. J Cataract Refract Surg 2009; 35: 1055–1062.
  • Kanellopoulos AJ, Asimellis G. OCT‐derived comparison of corneal thickness distribution and asymmetry differences between normal and keratoconic eyes. Cornea 2014; 33: 1274–1281.
  • Jhanji V, Yang B, Yu M et al. Corneal thickness and elevation measurements using swept‐source optical coherence tomography and slit scanning topography in normal and keratoconic eyes. Clin Exp Ophthalmol 2013; 41: 735–745.
  • Schroder S, Maurer S, Eppig T et al. Comparison of corneal tomography: repeatability, precision, misalignment, mean elevation, and mean pachymetry. Curr Eye Res 2018; 43: 709–716.
  • Szalai E, Nemeth G, Hassan Z et al. Noncontact evaluation of corneal grafts: swept‐source Fourier domain OCT versus high‐resolution Scheimpflug imaging. Cornea 2017; 36: 434–439.
  • Rocha KM, Perez‐straziota CE, Stulting RD et al. SD‐OCT analysis of regional epithelial thickness profiles in keratoconus, postoperative corneal ectasia, and normal eyes. J Refract Surg 2013; 29: 173–179.
  • Prakash G, Agarwal A, Mazhari AI et al. A new, pachymetry‐based approach for diagnostic cutoffs for normal, suspect and keratoconic cornea. Eye (Lond) 2012; 26: 650–657.
  • Li Y, Meisler DM, Tang M et al. Keratoconus diagnosis with optical coherence tomography pachymetry mapping. Ophthalmology 2008; 115: 2159–2166.
  • Kanellopoulos AJ, Asimellis G. OCT corneal epithelial topographic asymmetry as a sensitive diagnostic tool for early and advancing keratoconus. Clin Ophthalmol 2014; 8: 2277–2287.
  • Haque S, Jones L, Simpson T. Thickness mapping of the cornea and epithelium using optical coherence tomography. Optom Vis Sci 2008; 85: E963–E976.
  • Reinstein DZ, Gobbe M, Archer TJ et al. Epithelial, stromal, and total corneal thickness in keratoconus: three‐dimensional display with artemis very‐high frequency digital ultrasound. J Refract Surg 2010; 26: 259–271.
  • Silverman RH, Urs R, Roychoudhury A et al. Epithelial remodeling as basis for machine‐based identification of keratoconus. Invest Ophthalmol Vis Sci 2014; 55: 1580–1587.
  • Rocha KM, Perez‐straziota CE, Stulting RD et al. Epithelial and stromal remodeling after corneal collagen cross‐linking evaluated by spectral‐domain OCT. J Refract Surg 2014; 30: 122–127.
  • Temstet C, Sandali O, Bouheraoua N et al. Corneal epithelial thickness mapping using Fourier‐domain optical coherence tomography for detection of form fruste keratoconus. J Cataract Refract Surg 2015; 41: 812–820.
  • Dutta D, Rao HL, Addepalli UK et al. Corneal thickness in keratoconus: comparing optical, ultrasound, and optical coherence tomography pachymetry. Ophthalmology 2013; 120: 457–463.
  • Sandali O, El sanharawi M, Temstet C et al. Fourier‐domain optical coherence tomography imaging in keratoconus: a corneal structural classification. Ophthalmology 2013; 120: 2403–2412.
  • Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998; 42: 297–319.
  • Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet‐a‐induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 2003; 135: 620–627.
  • Seiler T, Hafezi F. Corneal cross‐linking‐induced stromal demarcation line. Cornea 2006; 25: 1057–1059.
  • Yam JC, Chan CW, Cheng AC. Corneal collagen cross‐linking demarcation line depth assessed by Visante OCT after CXL for keratoconus and corneal ectasia. J Refract Surg 2012; 28: 475–481.
  • Kymionis GD, Tsoulnaras KI, Grentzelos MA et al. Evaluation of corneal stromal demarcation line depth following standard and a modified‐accelerated collagen cross‐linking protocol. Am J Ophthalmol 2014; 158: 671–675.e1.
  • Kymionis GD, Grentzelos MA, Plaka AD et al. Correlation of the corneal collagen cross‐linking demarcation line using confocal microscopy and anterior segment optical coherence tomography in keratoconic patients. Am J Ophthalmol 2014; 157: 110–115.e1.
  • Doors M, Tahzib NG, Eggink FA et al. Use of anterior segment optical coherence tomography to study corneal changes after collagen cross‐linking. Am J Ophthalmol 2009; 148: 844–851.e2.
  • Kanellopoulos AJ, Asimellis G. Introduction of quantitative and qualitative cornea optical coherence tomography findings induced by collagen cross‐linking for keratoconus: a novel effect measurement benchmark. Clin Ophthalmol 2013; 7: 329–335.
  • Peyman A, Nouralishahi A, Hafezi F et al. Stromal demarcation line in pulsed versus continuous light accelerated corneal cross‐linking for keratoconus. J Refract Surg 2016; 32: 206–208.
  • Spadea L, Di genova L, Tonti E. Corneal stromal demarcation line after 4 protocols of corneal crosslinking in keratoconus determined with anterior segment optical coherence tomography. J Cataract Refract Surg 2018; 44: 596–602.
  • Matalia H, Swarup R. Imaging modalities in keratoconus. Indian J Ophthalmol 2013; 61: 394–400.
  • Fuentes bonthoux F, Galletti JG, Tytiun A et al. Effects of corneal collagen crosslinking for keratoconus assessed with anterior segment optical coherence tomography. Cureus 2012; 4: e61.
  • Mazzotta C, Balestrazzi A, Traversi C et al. Treatment of progressive keratoconus by riboflavin‐UVA‐induced cross‐linking of corneal collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal microscopy in humans. Cornea 2007; 26: 390–397.
  • Tuft SJ, Gregory WM, Buckley RJ. Acute corneal hydrops in keratoconus. Ophthalmology 1994; 101: 1738–1744.
  • Meyer JJ, Mcghee CN. Acute corneal hydrops complicated by microbial keratitis: case series reveals poor immediate and long‐term prognosis. Cornea 2016; 35: 1019–1022.
  • Mostafavi D, Chu DS. Two cases of keratoconus associated with spontaneous corneal perforation. Cornea 2010; 29: 825–827.
  • Margo CE, Mosteller MW. Corneal pseudocyst following acute hydrops. Br J Ophthalmol 1987; 71: 359–360.
  • Kucumen BR, Yenerel NM, Gorgun E et al. Anterior segment optical coherence tomography findings of acute hydrops in a patient with keratoconus. Ophthalmic Surg Lasers Imaging 2010; 41: S114–S116.
  • Schanzlin DJ, Asbell PA, Burris TE et al. The intrastromal corneal ring segments. Phase II results for the correction of myopia. Ophthalmology 1997; 104: 1067–1078.
  • Ertan A, Colin J. Intracorneal rings for keratoconus and keratectasia. J Cataract Refract Surg 2007; 33: 1303–1314.
  • Boxer wachler BS, Christie JP, Chandra NS et al. Intacs for keratoconus. Ophthalmology 2003; 110: 1031–1040.
  • Coskunseven E, Kymionis GD, Tsiklis NS et al. Complications of intrastromal corneal ring segment implantation using a femtosecond laser for channel creation: a survey of 850 eyes with keratoconus. Acta Ophthalmol 2011; 89: 54–57.
  • Lai MM, Tang M, Andrade EM et al. Optical coherence tomography to assess intrastromal corneal ring segment depth in keratoconic eyes. J Cataract Refract Surg 2006; 32: 1860–1865.
  • Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography ‐ a review. Clin Exp Ophthalmol 2009; 37: 81–89.
  • Kucumen RB, Gorgun E, Yenerel NM et al. Intraoperative use of AS‐OCT during intrastromal corneal ring segment implantation. Ophthalmic Surg Lasers Imaging 2012; 43: S109–S116.
  • Monteiro T, Alfonso JF, Franqueira N et al. Predictability of tunnel depth for intrastromal corneal ring segments implantation between manual and femtosecond laser techniques. J Refract Surg 2018; 34: 188–194.
  • Gorgun E, Kucumen RB, Yenerel NM et al. Assessment of intrastromal corneal ring segment position with anterior segment optical coherence tomography. Ophthalmic Surg Lasers Imaging 2012; 43: 214–221.
  • Naftali M, Jabaly‐habib H. Depth of intrastromal corneal ring segments by OCT. Eur J Ophthalmol 2013; 23: 171–176.
  • Williams K, Keane M, Coffrey N et al. The Australian Corneal Graft Registry 2018 Report. Adelaide: Flinders University, 2018.
  • Reinhart WJ, Musch DC, Jacobs DS et al. Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the American Academy of ophthalmology. Ophthalmology 2011; 118: 209–218.
  • Han DC, Mehta JS, Por YM et al. Comparison of outcomes of lamellar keratoplasty and penetrating keratoplasty in keratoconus. Am J Ophthalmol 2009; 148: 744–751.e1.
  • Parker JS, van Dijk K, Melles GR. Treatment options for advanced keratoconus: a review. Surv Ophthalmol 2015; 60: 459–480.
  • Lee WB, Mathys KC. Traumatic wound dehiscence after deep anterior lamellar keratoplasty. J Cataract Refract Surg 2009; 35: 1129–1131.
  • Arnalich‐montiel F, Alio del barrio JL, Alio JL. Corneal surgery in keratoconus: which type, which technique, which outcomes? Eye Vis (Lond) 2016; 3: 2.
  • Khurana RN, Li Y, Tang M et al. High‐speed optical coherence tomography of corneal opacities. Ophthalmology 2007; 114: 1278–1285.
  • Anwar M, Teichmann KD. Big‐bubble technique to bare Descemet's membrane in anterior lamellar keratoplasty. J Cataract Refract Surg 2002; 28: 398–403.
  • Ghouali W, Grieve K, Bellefqih S et al. Full‐field optical coherence tomography of human donor and pathological corneas. Curr Eye Res 2015; 40: 526–534.
  • Janunts E, Langenbucher A, Seitz B. In vitro corneal tomography of donor cornea using anterior segment OCT. Cornea 2016; 35: 647–653.
  • Krivoy D, Mccormick S, Zaidman GW. Postkeratoplasty keratoconus in a nonkeratoconus patient. Am J Ophthalmol 2001; 131: 653–654.
  • De benito‐llopis L, Mehta JS, Angunawela RI et al. Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior lamellar keratoplasty. Am J Ophthalmol 2014; 157: 334–341.e3.
  • Borderie VM, Sandali O, Bullet J et al. Long‐term results of deep anterior lamellar versus penetrating keratoplasty. Ophthalmology 2012; 119: 249–255.
  • Gorski M, Shih C, Savoie B et al. Spontaneous Descemet membrane detachment 20 years after penetrating Keratoplasty for Keratoconus. Cornea 2016; 35: 1023–1025.
  • Petrelli M, Oikonomakis K, Andreanos K et al. Surgical management of spontaneous, late‐onset Descemet membrane detachment after penetrating keratoplasty for keratoconus: a case report. Eye Vis (Lond) 2017; 4: 14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.