130
Views
2
CrossRef citations to date
0
Altmetric
Review

Peripheral eye length measurement techniques: a review

, , &
Pages 138-147 | Received 14 Aug 2018, Accepted 08 Feb 2019, Published online: 21 Apr 2021

REFERENCES

  • Nangia V, Jonas JB, Sinha A et al. Ocular axial length and its associations in an adult population of central rural India: the Central India eye and medical study. Ophthalmology 2010; 117: 1360–1366.
  • Raj PS, Ilango B, Watson A. Measurement of axial length in the calculation of intraocular lens power. Eye 1998; 12: 227–229.
  • Hitzenberger CK, Drexler W, Dolezal C et al. Measurement of the axial length of cataract eyes by laser Doppler interferometry. Invest Ophthalmol Vis Sci 1993; 34: 1886–1893.
  • Galantuomo MS, Fossarello M, Cuccu A et al. The role of eye axial length in planning strabismus surgery. Invest Ophthalmol Vis Sci 2013; 54: 4707.
  • Adams AJ. Axial length elongation, not corneal curvature, as a basis of adult onset myopia. Optom Vis Sci 1987; 64: 150–152.
  • Grosvenor T, Scott R. Role of the axial length/corneal radius ratio in determining the refractive state of the eye. Optom Vis Sci 1994; 71: 573–579.
  • Atchison DA, Pritchard N, Schmid KL et al. Shape of the retinal surface in emmetropia and myopia. Invest Ophthalmol Vis Sci 2005; 46: 2698–2707.
  • Kuo AN, Verkicharla PK, Mcnabb RP et al. Posterior eye shape measurement with retinal OCT compared to MRIPosterior eye shape measurement with retinal OCT. Invest Ophthalmol Vis Sci 2016; 57: OCT196–OCT203.
  • Deller JF, O'connor AD, Sorsby A. X‐ray measurement of the diameters of the living eye. Proc R Soc Med 1947; 134: 456–467.
  • Meng W, Butterworth J, Malecaze F et al. Axial length of myopia: a review of current research. Ophthalmologica 2010; 225: 127–134.
  • Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol 2007; 85: 472–485.
  • Rushton R. The clinical measurement of the axial length of the living eye. Transact Ophthalmol Soc UK 1938; 58: 136–142.
  • Goldmann H, Hagen R. Zur direkten Messung der Totalbrechkraft des lebenden menschlichen Auges. Ophthalmologica 1942; 104: 15–22.
  • Fercher A, Mengedoht K, Werner W. Eye‐length measurement by interferometry with partially coherent light. Opt Lett 1988; 13: 186–188.
  • Fercher A, Hitzenberger C, Juchem M. Measurement of intraocular optical distances using partially coherent laser light. J Mod Optic 1991; 38: 1327–1333.
  • Schmid G, Petrig B, Riva C et al. Measurement by laser Doppler interferometry of intraocular distances in humans and chicks with a precision of better than±20 μm. Appl Optics 1996; 35: 3358–3361.
  • Schmid GF. Development of a laser Doppler interferometer to investigate postnatal eye growth regulation. 1996. Dissertations available from ProQuest. AAI9712997. https://repository.upenn.edu/dissertations/AAI9712997
  • Schmid G, Petrig B, Riva C et al. Eye‐shape and diurnal eye length variation by laser Doppler interferometry. Vision science and its applications. Topical meeting, optical Soc am, Santa Fe. Technic Dig Ser 1994; 2: 130–133.
  • Schmid GF, Petrig BL, Riva CE et al. Measurement of eye length and eye shape by optical low coherence reflectometry. Int Ophthalmol 2001; 23: 317–320.
  • Verkicharla PK, Mathur A, Mallen EA et al. Eye shape and retinal shape, and their relation to peripheral refraction. Ophthalmic Physl Opt 2012; 32: 184–199.
  • Ding X, Wang D, Huang Q et al. Distribution and heritability of peripheral eye length in Chinese children and adolescents: the Guangzhou twin eye StudyDistribution and heritability of peripheral eye length. Invest Ophthalmol Vis Sci 2013; 54: 1048–1053.
  • Faria‐ribeiro M, Queirós A, Lopes‐ferreira D et al. Peripheral refraction and retinal contour in stable and progressive myopia. Optom Vis Sci 2013; 90: 9–15.
  • Ehsaei A, Chisholm CM, Pacey IE et al. Off‐axis partial coherence interferometry in myopes and emmetropes. Ophthalmic Physiol Opt 2013; 33: 26–34.
  • Mallen EA, Kashyap P. Technical note: measurement of retinal contour and supine axial length using the Zeiss IOLMaster. Ophthalmic Physiol Opt 2007; 27: 404–411.
  • Schmid GF. Axial and peripheral eye length measured with optical low coherence reflectometry. J Biomed Opt 2003; 8: 655–662.
  • Schmid GF. Variability of retinal steepness at the posterior pole in children 7–15 years of age. Curr Eye Res 2003; 27: 61–68.
  • Schmid GF. Association between retinal steepness and central myopic shift in children. Optom Vis Sci 2011; 88: 684–690.
  • Atchison DA, Charman WN. Can partial coherence interferometry be used to determine retinal shape? Optom Vis Sci 2011; 88: E601–E607.
  • Schulle KL, Berntsen DA. Repeatability of on‐and off‐axis eye length measurements using the lenstar. Optom Vis Sci 2013; 90: 16–22.
  • Ding X, He M. Measurement of peripheral eye length. Ophthalmology 2012; 119: 1084–1085.
  • Hitzenberger CK. Optical measurement of the axial eye length by laser Doppler interferometry. Invest Ophthalmol Vis Sci 1991; 32: 616–624.
  • Drexler W, Findl O, Schmetterer L et al. Eye elongation during accommodation in humans: differences between emmetropes and myopes. Invest Ophthalmol Vis Sci 1998; 39: 2140–2147.
  • Mallen EA, Kashyap P, Hampson KM. Transient axial length change during the accommodation response in young adults. Invest Ophthalmol Vis Sci 2006; 47: 1251–1254.
  • Woodman EC, Read SA, Collins MJ. Axial length and choroidal thickness changes accompanying prolonged accommodation in myopes and emmetropes. Vision Res 2012; 72: 34–41.
  • Atchison DA, Smith G. Possible errors in determining axial length changes during accommodation with the IOLMaster. Optom Vis Sci 2004; 81: 283–286.
  • Vogel A, Dick HB, Krummenauer F. Reproducibility of optical biometry using partial coherence interferometry: intraobserver and interobserver reliability. J Cataract Refract Surg 2001; 27: 1961–1968.
  • Kiss B, Findl O, Menapace R et al. Biometry of cataractous eyes using partial coherence interferometry: clinical feasibility study of a commercial prototype I. J Cataract Refract Surg 2002; 28: 224–229.
  • Haigis W. Challenges and approaches in modern biometry and IOL calculation. Saudi J Ophthalmol 2012; 26: 7–12.
  • Kurian M, Negalur N, Das S et al. Biometry with a new swept‐source optical coherence tomography biometer: repeatability and agreement with an optical low‐coherence reflectometry device. J Cataract Refract Surg 2016; 42: 577–581.
  • Santodomingo‐rubido J, Mallen E, Gilmartin B et al. A new non‐contact optical device for ocular biometry. Br J Ophthalmol 2002; 86: 458–462.
  • Hoffer KJ, Shammas HJ, Savini G. Comparison of 2 laser instruments for measuring axial length. J Cataract Refract Surg 2010; 36: 644–648.
  • Hoffer KJ, Shammas HJ, Savini G et al. Multicenter study of optical low‐coherence interferometry and partial‐coherence interferometry optical biometers with patients from the United States and China. J Cataract Refract Surg 2016; 42: 62–67.
  • Savini G, Hoffer KJ, Barboni P et al. Accuracy of optical biometry combined with Placido disc corneal topography for intraocular lens power calculation. PLoS One 2017; 12: e0172634.
  • Pajic B, Mueller M, Allemann R et al. GALILEI G6 Lens Professional vs. IOLMaster and Lenstar LS900 – a comparison study 2014. Available at: http://www.adaptltda.com.br/galilei/assets/files/prof_pajic_GALILEIG6.pdf, 2014.
  • Jung S, Chin HS, Kim NR et al. Comparison of repeatability and agreement between swept‐source optical biometry and dual‐Scheimpflug topography. J Ophthalmol 2017; 2017: 1–5.
  • Sel S, Stange J, Kaiser D et al. Repeatability and agreement of Scheimpflug‐based and swept‐source optical biometry measurements. Cont Lens Anterior Eye 2017; 40: 318–322.
  • Horn TJ, Harrysson OL. Overview of current additive manufacturing technologies and selected applications. Sci Prog 2012; 95: 255–282.
  • Singh KD, Logan NS, Gilmartin B. Three‐dimensional modeling of the human eye based on magnetic resonance imaging. Invest Ophthalmol Vis Sci 2006; 47: 2272–2279.
  • Goebels S, Pattmöller M, Eppig T et al. Comparison of 3 biometry devices in cataract patients. J Cataract Refract Surg 2015; 41: 2387–2393.
  • Woodman EC. Ocular changes associated with accommodation in myopes and emmetropes. (Doctoral dissertation). Queensland University of Technology, 2015.
  • Tang J, Pan JY, Chang S et al. Comparison of ocular axial length measurements with MRI and partial coherence interferometry in highly myopic patients with posterior Staphyloma. Invest Ophthalmol Vis Sci 2014; 55: 5939.
  • Bencic G, Vatavuk Z, Marotti M et al. Comparison of A‐scan and MRI for the measurement of axial length in silicone oil‐filled eyes. Br J Ophthalmol 2009; 93: 502–505.
  • Duong TQ, Pardue MT, Thulé PM et al. Layer‐specific anatomical, physiological and functional MRI of the retina. NMR Biomed 2008; 21: 978–996.
  • Townsend KA, Wollstein G, Schuman JS. Clinical application of MRI in ophthalmology. NMR Biomed 2008; 21: 997–1002.
  • Fercher A, Roth E. Ophthalmic Laser Interferometry: Proc. SPIE 0658. Optical Instrumentation for Biomedical Laser Applications 1986. doi: 10.1117/12.938523.
  • Hitzenberger CK, Drexler W, Leitgeb RA et al. Key developments for partial coherence biometry and optical coherence tomography in the human eye made in ViennaKey developments in PCI and OCT. Invest Ophthalmol Vis Sci 2016; 57: OCT460–OCT474.
  • Sekine A, Minegishi I, Koizumi H. Axial eye‐length measurement by wavelength‐shift interferometry. Josa A 1993; 10: 1651–1655.
  • Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science (New York, NY) 1991; 254: 1178–1181.
  • Lexer F, Hitzenberger CK, Fercher A et al. Wavelength‐tuning interferometry of intraocular distances. Appl Optics 1997; 36: 6548–6553.
  • Fercher AF. Optical coherence tomography. J Biomed Opt 1996; 1: 157–173.
  • Drexler W, Hitzenberger CK, Sattmann H et al. Measurement of the thickness of fundus layers by partial coherence tomography. Opt Eng 1995; 34: 701–711.
  • Zhou X, Xie J, Shen M et al. Biometric measurement of the mouse eye using optical coherence tomography with focal plane advancement. Vision Res 2008; 48: 1137–1143.
  • Na park H, Qazi Y, Tan C et al. Assessment of axial length measurements in mouse eyes. Optom Vis Sci 2012; 89: 296–303.
  • Verkicharla PK, Mallen EA, Atchison DA. Repeatability and comparison of peripheral eye lengths with two instruments. Optom Vis Sci 2013; 90: 215–222.
  • Verkicharla PK, Suheimat M, Mallen EA et al. Influence of eye rotation on peripheral eye length measurement obtained with a partial coherence interferometry instrument. Ophthalmic Physiol Opt 2014; 34: 82–88.
  • Buckhurst PJ, Wolffsohn JS, Shah S et al. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br J Ophthalmol 2009; 93: 949–953.
  • Rončević MB, Bušić M, Čima I et al. Comparison of optical low‐coherence reflectometry and applanation ultrasound biometry on intraocular lens power calculation. Graefes Arch Clin Exp Ophthalmol 2011; 249: 69–75.
  • Kunert KS, Peter M, Blum M et al. Repeatability and agreement in optical biometry of a new swept‐source optical coherence tomography–based biometer versus partial coherence. Interferometry and optical low‐coherence reflectometry. J Cataract Refract Surg 2016; 42: 76–83.
  • Schmucker C, Schaeffel F. In vivo biometry in the mouse eye with low coherence interferometry. Vision Res 2004; 44: 2445–2456.
  • Gray L, Strang N, Seidel D et al. Corneal asphericity, ocular aberrations and retinal shape in hyperopia, myopia and emmetropia. Invest Ophthalmol Vis Sci 2005; 46: 5600.
  • Macfadden L, Gray L, Strang N et al. The effect of eye rotation on measurements of peripheral retinal shape using the IOLMaster. Invest Ophthalmol Vis Sci 2007; 48: 4002.
  • Noble A, Walline J. Repeatability of peripheral axial length measurements (RPALM) study. Optom Vis Sci 2010; 87: 105981.
  • Radhakrishnan H, Charman WN. Peripheral refraction measurement: does it matter if one turns the eye or the head? Ophthalmol Physiol Opt 2008; 28: 73–82.
  • Ferree CE, Rand G, Hardy C. Refraction for the peripheral field of vision. Arch Ophthalmol 1931; 5: 717–731.
  • Seidemann A, Schaeffel F, Guirao A et al. Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects. Josa A 2002; 19: 2363–2373.
  • Mathur A, Atchison DA, Kasthurirangan S et al. The influence of oblique viewing on axial and peripheral refraction for emmetropes and myopes. Ophthalmic Physiol Opt 2009; 29: 155–161.
  • Sheng H, Bottjer CA, Bullimore MA. Ocular component measurement using the Zeiss IOLMaster. Optom Vis Sci 2004; 81: 27–34.
  • Huang J, Mcalinden C, Su B et al. The effect of cycloplegia on the lenstar and the IOLMaster biometry. Optom Vision Sci 2012; 89: 1691–1696.
  • Mutti D, Zadnik K, Egashira S et al. The effect of cycloplegia on measurement of the ocular components. Invest Ophthalmol Vis Sci 1994; 35: 515–527.
  • Mallen EA, Gammoh Y, Al‐bdour M et al. Refractive error and ocular biometry in Jordanian adults. Ophthalmic Physiol Opt 2005; 25: 302–309.
  • Cheung SW, Chan R, Cheng R et al. Effect of cycloplegia on axial length and anterior chamber depth measurements in children. Clin Exp Optom 2009; 92: 476–481.
  • Clark CA, Elsner AE, Konynenbelt BJ. Eye shape using partial coherence interferometry, autorefraction and SD OCT. Optometry Vision Sci: official publication of the American Academy of. Optometry 2015; 92: 115–122.
  • Haigis W, Lege B, Miller N et al. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 2000; 238: 765–773.
  • Haigis W. Pseudophakic correction factors for optical biometry. Graefes Arch Clin Exp Ophthalmol 2001; 239: 589–598.
  • Jansson F. Measurement of intraocular distances by ultrasound and comparison between optical and ultrasonic determinations of the depth of the anterior chamber. Acta Ophthalmol 1963; 41: 25–61.
  • Suheimat M, Verkicharla PK, Mallen EA et al. Refractive indices used by the Haag‐Streit Lenstar to calculate axial biometric dimensions. Ophthalmol Physiol Opt 2015; 35: 90–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.