0
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Factors influencing short wavelength automated perimetry in normal subjects

, DipAppSc (Optom) PhD FAAO, , BOptom & , BOptom
Pages 77-80 | Received 25 Mar 2010, Accepted 23 Jun 1998, Published online: 15 Apr 2021

REFERENCES

  • Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Amer J Ophthalmol 1989; 107: 453–464.
  • Sample PA, Bosworth CF, Weinreb RN. Short‐wavelength automated perimetry and motion automated perimetry in patients with glaucoma. Arch Ophthalmol 1997; 115: 1129–1133.
  • Marc RE, Sperling HG. Chromatic organization of primate cones. Science 1977; 196: 454–456.
  • Johnson CA. Early losses of visual function in glaucoma. Optom Vis Sci 1995; 72: 359–370.
  • Johnson CA, Adams AJ, Twelker JD, Quigg JM. Age‐related changes in the central visual field for short‐wavelength‐sensitive pathways. J Opt Soc Amer A 1988; 5: 2131–2139.
  • Sample PA, Weinreb RN. Color perimetry for assessment of primary open‐angle glaucoma. Invest Ophthalmol Vis Sci 1990; 31: 1869–1875.
  • Sample PA, Weinreb RN. Progressive color visual field loss in glaucoma. Invest Ophthalmol Vis Sci 1992; 33: 2068–2071.
  • Keltner JL, Johnson CA. Short‐wavelength automated perimetry in neuro‐ophthalmologic disorders. Arch Ophthalmol 1995; 113: 475–481.
  • Johnson CA. Brandt JD. Khong AM. Adams AJ. Short‐wavelength automated perimetry in low‐, medium‐, and high‐risk ocular hypertensive eyes. Initial baseline results. Arch Ophthalmol 1995; 113: 70–76.
  • Sample PA, Martinez GA, Weinreb RN. Short‐wavelength automated perimetry without lens density testing. Amer J Ophthalmol 1994; 118: 632–641.
  • Wild JM, Moss ID. Baseline alterations in blue‐on‐yellow normal perimetric sensitivity. Graefes Arch Clin Exp Ophthalmol 1996; 234: 141–149.
  • Rovamo J., Virsu V. An estimation and application of the human cortical magnification factor. Exper Brain Res 1979; 37: 495–510.
  • Hart WM, Silverman SE, Trick G., Nesher R., Gordon MO. Glaucomatous visual field damage: luminance and color contrast sensitivities. Invest Ophthalmol Vis Sci 1990; 31: 359–367.
  • Wild JM, Moss ID, Whittaker D., O'neill EC. The statistical interpretation of blue on yellow visual field loss. Invest Ophthalmol Vis Sci 1995; 36: 1398–1410.
  • Wild JM, Cubbige RP, Pacey IE, Robinson R. Statistical aspects of the normal visual field in short‐wavelength automated perimetry. Invest Ophthalmol Vis Sci 1998; 39: 54–63.
  • Tyler CW. Specific deficits of flicker sensitivity in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 1981; 20: 204–212.
  • Casson EJ, Johnson CA, Nelson‐quigg JM. Temporal modulation perimetry: the effects of ageing and eccentricity on sensitivity in normals. Invest Ophthalmol Vis Sci 1993; 34: 3096–4102.
  • Yoshiyama KK. Johnson CA. Which method of flicker perimetry is most effective for detection of glaucomatous visual field loss Invest Ophthalmol Vis Sci 1997; 38: 2270–2277.
  • Silverman SE, Trick GL, Hart WM. Motion perception is abnormal in primary open angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 1990; 31: 722–729.
  • Joffe KM. Raymond JE. Chrichton A.. Motion coherence perimetry in glaucoma and suspected glaucoma. Vision Res 1997; 37: 955–964.
  • Frisen L. High pass resolution perimetry. Recent developments. In: Heijl A., ed. Perimetry Update 1988/89. Amsterdam: Kugler, 1989: 369–376.
  • Kono Y., Chi QM, Tomita G., Yamamoto T., Kitazawa Y. High‐pass resolution perimetry and a Humphrey Field Analyzer as indicators of glaucomatous optic disc abnormalities. A comparative study. Ophthalmology 1997; 104: 1496–1502.
  • Kelly DH. Frequency doubling in visual responses. J Opt Soc Amer 1966; 56: 1628–1633.
  • Johnson CA, Samuels SJ. Screening for glaucomatous visual field loss with frequency‐doubling perimetry. Invest Ophthalmol Vis Sci 1997; 38: 413–425.
  • Rohrschneider K., Gluck R., Becker M., Holz FG, Kruse FE, Fendrich T. Scanning laser fundus perimetry before laser photocoagulation of well defined choroidal neovascularisation. Brit J Ophthalmol 1997; 81: 568–573.
  • Meyer JH, Guhlmann M., Funk J. Blind spot size depends on the optic disc topography: a study using SLO controlled scotometry and the Heidelberg retina tomograph. Brit J Ophthalmol 1997; 81: 355–359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.