97
Views
67
CrossRef citations to date
0
Altmetric
Review

The mechanism of aqueous humour formation

, , , &
Pages 335-349 | Received 09 Jun 2009, Accepted 27 Oct 2002, Published online: 15 Apr 2021

REFERENCES

  • Bill A. Formation and drainage of aqueous humor in cats. Exp Eye Res 1966; 5: 185–190.
  • Civan MM. Transport components of net secretion of the aqueous humor and their integrated regulation. Curr Top Membr 1998; 45: 1–24.
  • Brubaker RF. Flow of aqueous humor in humans (The Friedenwald Lecture). Invest Ophthalmol Vis Sci 1991; 32: 3145–3166.
  • Krupin T., Civan MM. Physiologic basis of aqueous humor formation. In: Ritch R., Shields MB, Krupin, T., eds. The Glaucomas, 2nd ed. St. Louis : Mosby, 1995: 251–280.
  • Davson H. The aqueous humor and intraocular pressure. In: Davson, H., ed. Davson's Physiology of the Eye. London : The Macmillan Press Ltd, 1990: 3–95.
  • Cole DF. Ocular fluids. In: Davson, H., ed. The Eye, 3rd ed. New York and London : Academic Press Inc, 1984: 269–390.
  • Abdel‐latif AA. Iris‐ciliary body, aqueous humor and trabecular meshwork. In: Harding, JJ, ed. Biochemistry of the Eye. London : Chapman & Hall, 1997: 52–93.
  • Rose RC, Bode AM. Ocular ascorbate transport and metabolism. Comp Biochem Physiol A 1991; 100: 273–285.
  • Reiss GR, Werness PG, Zollman PE, Brubaker RF. Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals. Arch Ophthalmol 1986; 104: 753–755.
  • Kinsey VE. Comparative chemistry of aqueous humor in posterior and anterior chambers of rabbit eye. Arch Ophthalmol 1953; 50: 401–417.
  • Ringvold A., Anderssen E., Kjonniksen I. Ascorbate in the corneal epithelium of diurnal and nocturnal species. Invest Ophthalmol Vis Sci 1998; 39: 2774–2777.
  • Ringvold A., Anderssen E., Kjonniksen I. Distribution of ascorbate in the anterior bovine eye. Invest Ophthalmol Vis Sci 2000; 41: 20–23.
  • Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996; 80: 389–393.
  • Bill A. Blood circulation and fluid dynamics in the eye. Physiol Rev 1975; 55: 383417.
  • Green K., Pederson JE. Contribution of secretion and filtration to aqueous humor formation. Am J Physiol 1972; 222: 1218–1226.
  • Bill A. The role of ciliary blood flow and ultrafiltration in aqueous humor formation. Exp Eye Res 1973; 16: 287–298.
  • Becker B. Ouabain and aqueous humor dynamics in the rabbit eye. Invest Ophthalmol Vis Sci 1963; 2: 325–331.
  • Becker B. Vanadate and aqueous humor dynamics. Proctor Lecture. Invest Ophthalmol Vis Sci 1980; 19: 1156–1165.
  • Kodama T., Reddy VN, Macri FJ. Pharmacological study on the effects of some ocular hypotensive drugs on aqueous humor formation in the arterially perfused enucleated rabbit eye. Ophthalmic Res 1985; 17: 120–124.
  • Chu TC, Candia OA. Active transport of ascorbate across the isolated rabbit ciliary epithelium. Invest Ophthalmol Vis Sci 1988; 29: 594–599.
  • Watanabe T., Saito Y. Characteristics of ion transport across the isolated ciliary epithelium of the toad as studied by electrical measurements. Exp Eye Res 1978; 27: 215–226.
  • Krupin T., Reinach PS, Candia OA, Podos SM. Transepithelial electrical measurements on the isolated rabbit iris‐ciliary body. Exp Eye Res 1984; 38: 115–123.
  • Cole DF. Evidence for active transport of chloride in ciliary epithelium of the rabbit. Exp Eye Res 1969; 8: 5–15.
  • Burstein NL, Fischbarg J., Liebovitch L., Cole DF. Electrical potential, resistance, and fluid secretion across isolated ciliary body. Exp Eye Res 1984; 39: 771–779.
  • Wilson WS, Shahidullah M., Millar C. The bovine arterially‐perfused eye: an in vitro method for the study of drug mechanisms on IOP, aqueous humor formation and uveal vasculature. Curr Eye Res 1993; 12: 609–620.
  • Cole DF. Secretion of the aqueous humor. Exp Eye Res 1977; 25(5): 161–176.
  • Cole DF. Aqueous humor formation. Doc Ophthalmol 1966; 21: 116–238.
  • Dunn JJ, Lytle C., Crook RB. Immunolo‐calization of the Na‐K‐Cl cotransporter in bovine ciliary epithelium. Invest Ophthalmol Vis Sci 2001; 42: 343–353.
  • Ghosh S., Hernando N., Martin‐alonso JM, Martin‐vasallo P., Coca‐prados M. Expression of multiple Na+, K+‐ATPase genes reveals a gradient of isoforms along the non‐pigmented ciliary epithelium: functional implications in aqueous humor secretion. J Cell Physiol 1991; 149: 184–194.
  • Muther TF, Friedland BR. Autoradiographic localization of carbonic anhydrase in the rabbit ciliary body. J Histochem Cytochem 1980; 28: 1119–1124.
  • Edelman JL, Sachs G., Adorante JS. Ion transport asymmetry and functional coupling in bovine pigmented and nonpigmented ciliary epithelial cells. Am J Physiol 1994; 266: C1210–C1221.
  • Riley MV, Kishida K. ATPases of ciliary epithelium: cellular and subcellular distribution and probable role in secretion of aqueous humor. Exp Eye Res 1986; 42: 559–568.
  • Elena PP, Fredj‐reygrobellet D., Moulin G., Lapalus P. Pharmacological characteristics of beta‐adrenergic‐sensitive adenylate cyclase in non pigmented and in pigmented cells of bovine ciliary process. Curr Eye Res 1984; 3: 1383–1389.
  • Okisaka S., Kuwabara T., Rapoport SI. Selective destruction of the pigmented epithelium in the ciliary body of the eye. Science 1974; 184: 1298–1299.
  • Raviola G., Raviola E. Intercellular junctions in the ciliary epithelium. Invest Ophthalmol Vis Sci 1978; 17: 958–981.
  • Cunha‐vaz J. The blood‐ocular barriers. Surv Ophthalmol 1979; 23: 279–296.
  • Smith RL, Raviola G. The structural basis of the blood‐aqueous barrier in the chicken eye. Invest Ophthalmol Vis Sci 1983; 24: 326–338.
  • Hirsch M., Montcourrier P., Arguillere P., Keller N. The structure of tight junctions in the ciliary epithelium. Curr Eye Res 1985; 4: 493–501.
  • Bill A. The blood‐aqueous barrier. Trans Ophthalmol Soc UK 1986; 105: 149–155.
  • Kishida K., Sasabe T., Manabe R., Otori T. Electric characteristics of the isolated rabbit ciliary body. Jpn J Ophthalmol 1981; 25: 407–416.
  • Frömter E., Diamond J. Route of passive ion permeation in epithelia. Nature New Biology 1972; 235: 9–13.
  • Chu TC, Candia OA. Electrically silent Na+ and Cl‐ fluxes across the rabbit ciliary epithelium. Invest Ophthalmol Vis Sci 1987; 28: 445–450.
  • Bukauskas FF, Peracchia C. Two distinct gating mechanisms in gap junction channels: CO2‐sensitive and voltage‐sensitive. Biophys J 1997; 72: 2137–2142.
  • Oh J., Krupin T., Tang LQ, Sveen J., Lahlum RA. Dye coupling of rabbit ciliary epithelial cells in vitro. Invest Ophthalmol Vis Sci 1994; 35: 2509–2514.
  • Green K., Bountra C., Georgiou P., House CR. An electrophysiologic study of rabbit ciliary epithelium. Invest Ophthalmol Vis Sci 1985; 26: 371–381.
  • Wiederholt M., Zadunaisky JA. Membrane potentials and intracellular chloride activity in the ciliary body of the shark. Pflugers Arch 1986; 407 Suppl 2: S112–S115.
  • Carre DA, Tang CSR, Krupin T., Civan MM. Effect of bicarbonate on intracellular potential of rabbit ciliary epithelium. Curr Eye Res 1992; 11: 609–624.
  • Bowler JM, Peart D., Purves RD, Carre DA, Macknight AD, Civan MM. Electron probe X‐ray microanalysis of rabbit ciliary epithelium. Exp Eye Res 1996; 62: 131–139.
  • Helbig H., Korbmacher C., Wohlfarth J., Coca‐prados M., Wiederholt M. Electrical membrane properties of a cell clone derived from human nonpigmented ciliary epithelium. Invest Ophthalmol Vis Sci 1989; 30: 882–889.
  • Civan MM, Peterson‐yantorno K., Sanchez‐torres J., Coca‐prados M. Potential contribution of epithelial Na+ channel to net secretion of aqueous humor. J Exp Zool 1997; 279: 498–503.
  • Jacob TJ, Civan MM. Role of ion channels in aqueous humor formation. Am J Physiol 1996; 271: C703–C720.
  • Avila MY, Seidler RW, Stone RA, Civan MM. Inhibitors of NHE‐1 Na+/ H+ exchange reduce mouse intraocular pressure. Invest Ophthalmol Vis Sci 2002; 43: 1897–1902.
  • Helbig H., Korbmacher C., Wiederholt M. K+‐conductance and electrogenic Na+ K+ transport of cultured bovine pigmented ciliary epithelium. J Membrane Biol 1987; 99: 173–186.
  • Helbig H., Korbmacher C., Nawrath M., Erb C., Wiederholt M. Sodium bicarbonate cotransport in cultured pigmented ciliary epithelial cells. Curr Eye Res 1989; 8: 595–598.
  • Helbig H., Korbmacher C., Kuhner D., Berweck S., Wiederholt M. Characterization of Cl‐/HCO3 exchange in cultured bovine pigmented ciliary epithelium. Exp Eye Res 1988; 47: 515–523.
  • Helbig H., Korbmacher C., Berweck S., Kuhner D., Wiederholt M. Kinetic properties of Na+/H+ exchange in cultured bovine pigmented ciliary epithelial cells. Pflugers Arch 1988; 412: 80–85.
  • Coca‐prados M., Anguita J., Chalfant ML, Civan MM. PKC‐sensitive Cl‐ channels associated with ciliary epithelial homologue of pICln. Am J Physiol 1995; 268: C572–C579.
  • Davson H. Physiology of the Ocular and Cerebrospinal Fluids. London : JA Churchill Ltd, 1956.
  • Ueno S., Takeda K., Noguchi S., Kawamura M. Significance of the beta‐subunit in the biogenesis of Na+, K+‐ATPase. Biosci Rep 1997; 17: 173–188.
  • Glynn IM. Annual review prize lecture. ‘All hands to the sodium pump. J Physiol 1993; 462: 1–30.
  • Mobasheri, A., Avila, J., Cozar‐castellano I., Brownleader MD, Trevan M., Francis MJ et al. Na+, K+‐ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 2000; 20: 51–91.
  • Usukura J., Fain GL, Bok D. [3H]ouabain localization of Na‐K ATPase in the epithelium of rabbit ciliary body pars plicata. Invest Ophthalmol Vis Sci 1988; 29: 606–614.
  • Flügel C., Lütjen‐drecoll E. Presence and distribution of Na+/K+‐ATPase in the ciliary epithelium of the rabbit. Histochemistry 1988; 88: 613–621.
  • Cole DF. Location of Ouabain‐sensitive adenosine triphosphatase in ciliary epithelium. Exp Eye Res 1964; 3: 72–75.
  • Ghosh S., Freitag AC, Martin‐vasallo P., Coca‐prados M. Cellular distribution and differential gene expression of the three a subunit isoforms of the Na, K‐ATPase in the ocular ciliary epithelium. J Biol Chem 1990; 265: 2935–2940.
  • Oppelt WW, White ED Jr. Effect of ouabain on aqueous humor formation rate in cats. Invest Ophthalmol 1968; 7: 328–333.
  • Chu TC, Candia OA, Podos SM. Electrical parameters of the isolated monkey ciliary epithelium and effects of pharmacological agents. Invest Ophthalmol Vis Sci 1987; 28: 1644–1648.
  • Sears ML, Yamada E., Cummins D., Mori N., Mead A., Murakami M. The isolated ciliary bilayer is useful for studies of aqueous humor formation. Trans Am Ophthalmol Soc 1991; 89: 131–152; discussion 52–54.
  • Iizuka S., Kishida K., Tsuboi S., Emi K., Manabe R. Electrical characteristics of the isolated dog ciliary body. Curr Eye Res 1984; 3: 417–421.
  • Mori N., Yamada E., Sears ML. Immunocy‐tochemical localization of Na/K‐ATPase in the isolated ciliary epithelial bilayer of the rabbit. Arch Histol Cytol 1991; 54: 259–265.
  • Wiederholt M., Helbig H., Korbmacher C. Ion transport across the ciliary epithelium: lessons from cultured cells and proposed role of the carbonic anhydrase. In: Botre F., Gross G., Storey, BT, eds. Carbonic Anhydrase. New York : VCH Weinheim, 1991: 232–244.
  • Kishida K., Sasabe T., Iizuka S., Manabe R., Otori T. Sodium and chloride transport across the isolated rabbit ciliary body. Curr Eye Res 1982; 2: 149–152.
  • Socci RR, Delamere NA. Characteristics of ascorbate transport in the rabbit iris‐ciliary body. Exp Eye Res 1988; 46: 853–861.
  • Cole DF. Electrical potential across the isolated ciliary body observed in vitro. Br J Ophthalmol 1961; 45: 641–653.
  • Cole DF. Transport across the isolated ciliary body of ox and rabbit. Br J Ophthalmol 1962; 46: 577–591.
  • Cole DF. Electrochemical changes associated with the formation of the aqueous humor. Br J Ophthalmol 1961; 45: 202–217.
  • Diamond JR, Bossert WH. Standing‐gradient osmotic flow: a mechanism for coupling of water and solute transport in epithelia. J Gen Physiol 1967; 50: 2061–2083.
  • Maren TH. The rates of movement of Na+, Cl‐, and HC03 from plasma to posterior chamber: effect of acetazolamide and relation to the treatment of glaucoma. Invest Ophthalmol 1976; 15: 356–364.
  • Garg LC, Oppelt WW. The effect of ouabain and acetazolamide on transport of sodium and chloride from plasma to aqueous humor. J Pharmacol Exp Ther 1970; 175: 237–247.
  • Zimmerman TJ, Garg LC, Vogh BP, Maren TH. The effect of acetazolamide on the movement of sodium into the posterior chamber of the dog eye. J Pharmacol Exp Ther 1976; 199: 510–517.
  • Maren TH. Ion secretion into the posterior aqueous humor of dogs and monkeys. Exp Eye Res 1977; 25 Suppl: 245–247.
  • Maren TH, Wistrand P., Swenson ER, Talalay ABC. The rates of ion movement from plasma to aqueous humor in the dogfish, squalus acanthias. Invest Ophthalmol Vis Sci 1975; 14: 662–673.
  • Waitzman MB, Jackson RT. Effects of topically administered ouabain on aqueous humor dynamics. Exp Eye Res 1965; 4: 135–145.
  • Holland MG, Gipson CC. Chloride ion transport in the isolated ciliary body. Invest Ophthalmol Vis Sci 1970; 9: 20–29.
  • To CH, Hodson SA. The glucose transport in retinal pigment epithelium is via passive facilitated diffusion. Comp Biochem Physiol A Mol Integr Physiol 1998; 121: 441–444.
  • Steinberg RH, Miller SS, Stern WH. Initial observations on the isolated retinal pigment epithelium‐choroid of the cat. Invest Ophthalmol Vis Sci 1978; 17: 675–678.
  • Pascuzzo GJ, Johnson JW, Pautler EL. Glucose transport in isolated mammalian pigment epithelium. Exp Eye Res 1980; 30: 53–58.
  • Pesin SR, Candia OA. Na+ and Cl‐ fluxes, and effects of pharmacological agents on the short‐circuit current of the isolated rabbit iris‐ciliary body. Curr Eye Res 1982; 2: 815–827.
  • Saito Y., Watanabe T. Relationship between short‐circuit current and unidirectional fluxes of Na and Cl across the ciliary epithelium of the toad: demonstration of active Cl transport. Exp Eye Res 1979; 28: 71–79.
  • To CH, Mok KH, Do CW, Lee KL, Millodot M. Chloride and sodium transport across bovine ciliary body/epithelium (CBE). Curr Eye Res 1998; 17: 896–902.
  • Holland MG, Stockwell M. Sodium ion transport of the ciliary body in vitro. Invest Ophthalmol Vis Sci 1967; 6: 401–409.
  • Candia OA, Shi XP, Chu TC. Ascorbate‐stimulated active Na+ transport in rabbit ciliary epithelium. Curr Eye Res 1991; 10: 197–203.
  • Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies. Ann Rev Biochem 1995; 64: 375–401.
  • Lindskog S. Structure and mechanism of carbonic anhydrase. Pharmacol Ther 1997; 74: 1–20.
  • Friedenwald JS. The formation of the intraocular fluid. Am J Ophthalmol 1949; 32: 9–27.
  • Kinsey VE, Reddy DVN. Turnover of total carbon dioxide in the aqueous humor and the effect thereon of acetazolamide. Arch Ophthalmol 1959; 62: 78–83.
  • Becker B. The effects of carbonic anhydrase inhibitor, acetazolaminde, on the composition of the aqueous humor. Am J Ophthalmol 1955; 40: 129–136.
  • Becker B. Carbonic anhydrase and the formation of aqueous humor. Am J Ophthalmol 1959; 47: 342–361.
  • Becker B. Carbonic anhydrase and the formation of aqueous humor. The Friedenwald memorial lecture. Am J Ophthalmol 1959; 47: 342–361.
  • Wang RF, Serle JB, Podos SM, Sugrue MF. MK‐507 (L‐671,152), a topically active carbonic anhydrase inhibitor, reduces aqueous humor production in monkeys. Arch Ophthalmolith 109: 1297–1299.
  • Stein A., Pinke R., Krupin T., Glabb E., Podos SM, Serle J. et al. The effect of topically administered carbonic anhydrase inhibitors on aqueous humor dynamics in rabbits. Am J Ophthalmol 1983; 95: 222–228.
  • Kishida K., Miwa Y., Iwata C. 2‐Substituted 1, 3, 4‐thiadiazole‐5‐sulfonamides as carbonic anhydrase inhibitors: their effects on the transepithelial potential difference of the isolated rabbit ciliary body and on the intraocular pressure of the living rabbit eye. Exp Eye Res 1986; 43: 981–995.
  • Bar‐ilan A., Pessah NI, Maren TH. The effects of carbonic anhydrase inhibitors on aqueous humor chemistry and dynamics. Invest Ophthalmol Vis Sci 1984; 25: 1198–1205.
  • Rosenberg LF, Krupin T., Tang LQ, Hong PH, Ruderman JM. Combination of systemic acetazolamide and topical dorzola‐mide in reducing intraocular pressure and aqueous humor formation. Ophthalmology 1998; 105: 88–92; discussion 92–93.
  • Dailey RA, Brubaker RF, Bourne WM. The effects of timolol maleate and acetazolamide on the rate of aqueous formation in normal human subjects. Am J Ophthalmol 1982; 93: 232–237.
  • Mclaughlin MA, Chiou GC. A synopsis of recent developments in antiglaucoma drugs. J Ocul Pharmacol 1985; 1: 101–121.
  • Hoyng PF, Van Beek LM. Pharmacological therapy for glaucoma: a review. Drugs 2000; 59: 411–434.
  • Cotlier E. Bicarbonate ATP‐ase in ciliary body and a theory of Diamox effect on aqueous humor formation. Int Ophthalmol 1979; 1: 123–128.
  • Maren TH. HCO3‐ formation in aqueous humor: mechanism and relation to the treatment of glaucoma. Invest Ophthalmol 1974; 13: 479–484.
  • Helbig H., Korbmacher C., Stumpff F., Coca‐prados M., Wiederholt M. Role of HCO3 in regulation of cytoplasmic pH in ciliary epithelial cells. Am J Physiol 1989; 257: C696–C705.
  • Butler GA, Chen M., Stegman Z., Wolosin JM. Na+‐ Cl‐ ‐ and HCO3‐‐dependent base uptake in the ciliary body pigment pigment epithelium. Exp Eye Res 1994; 59: 343–349.
  • Wolosin JM, Chen M., Gordon RE, Stegman Z., Butler GA. Separation of the rabbit ciliary body epithelial layers in viable form: identification of differences in bicarbonate transport. Exp Eye Res 1993; 56: 401–409.
  • Wolosin JM, Bonanno JA, Hanzel D., Machen TE. Bicarbonate transport mechanisms in rabbit ciliary body epithelium. Exp Eye Res 1991; 52: 397–407.
  • Lutjen‐drecoll E., Lonnerholm G. Carbonic anhydrase distribution in the rabbit eye by light and electron microscopy. Invest Ophthalmol Vis Sci 1981; 21: 782–797.
  • Lutjen‐drecoll E., Lonnerholm G., Eichhorn M. Carbonic anhydrase distribution in the human and monkey eye by light and electron microscopy. Graefes Arch Clin Exp Ophthalmol 1983; 220: 285–291.
  • Wu Q., Delamere NA, Pierce W. Jr. Membrane‐associated carbonic anhydrase in cultured rabbit nonpigmented ciliary epithelium. Invest Ophthalmol Vis Sci 1997; 38: 2093–2102.
  • Wistrand PJ, Garg LC. Evidence of a high‐activity C type of carbonic anhydrase in human ciliary processes. Invest Ophthalmol Vis Sci 1979; 18: 802–806.
  • Helbig H., Korbmacher C., Erb C., Nawrath M., Knuuttila KG, Wistrand P. et al. Coupling of 22Na and 36Cl uptake in cultured pigmented ciliary epithelial cells: a proposed role for the isoenzymes of carbonic anhydrase. Curr Eye Res 1989; 8: 1111–1119.
  • Dobbs PC, Epstein DL, Anderson PJ. Identification of isoenzyme C as the principal carbonic anhydrase in human ciliary processes. Invest Ophthalmol Vis Sci 1979; 18: 867–870.
  • Wistrand PJ, Schenholm M., Lonnerholm G. Carbonic anhydrase isoenzymes CA I and CA II in the human eye. Invest Ophthalmol Vis Sci 1986; 27: 419–428.
  • Ridderstrale Y., Wistrand PJ, Brechue WF. Membrane‐associated CA activity in the eye of the CA II‐deficient mouse. Invest Ophthalmol Vis Sci 1994; 35: 2577–2584.
  • Murakami M., Sears ML, Mori N., Mead A., Horio B., Yamada E. The loci of carbonic anhydrase activity in the ciliary epithelium of die rabbit eye: electrophysiological study with isolated ciliary epithelial bilayer. Acta Histochem Cytochem 1992; 25: 77–85.
  • Wu Q., Pierce WM Jr, Delamere NA. Cytoplasmic pH responses to carbonic anhydrase inhibitors in cultured rabbit nonpigmented ciliary epithelium. J Membr Biol 1998; 162: 31–38.
  • Matsui H., Murakami M., Wynns GC, Conroy CW, Mead A., Maren TH et al. Membrane carbonic anhydrase (IV) and ciliary epithelium. Carbonic anhydrase activity is present in the basolateral membranes of the non‐pigmented ciliary epithelium of rabbit eyes. Exp Eye Res 1996; 62: 409–417.
  • Candia OA. A novel system to measure labelled CO2 and HCO3‐ fluxes across epithelia: corneal epithelium as model tissue. Exp Eye Res 1996; 63: 137–149.
  • To CH, Do CW, Zamudio AC, Candia OA. Model of ionic transport for bovine ciliary epithelium: effects of acetazolamide and HCO. Am J Physiol 2001; 280: C1521–C1530.
  • Cole DF. Evidence for active transport of chloride in ciliary epithelium of the rabbit. Exp Eye Res 1969; 8: 5–15.
  • Wiederholt M., Zadunaisky JA. Decrease of intracellular chloride activity by furosemide in frog retinal pigment epithelium. Curr Eye Res 1984; 3: 673–675.
  • Saito Y., Watanabe T. Inhibition by prostaglandins of electrogenic chloride transport across toad ciliary epithelium. Exp Eye Res 1980; 31: 699–710.
  • Helbig H., Korbmacher C., Stumpff F., Coca‐prados M., Wiederholt M. Na+ H+ exchange regulates intracellular pH in a cell clone derived from bovine pigmented ciliary epithelium. J Cell Physiol 1988; 137: 384–389.
  • Haas M. The Na‐K‐Cl cotransporters. Am J Physiol 1994; 267: C869–C885.
  • Wiederholt M., Zadunaisky JA. Effects of ouabain and furosemide on transepithelial electrical parameters of the isolated shark ciliary epithelium. Invest Ophthalmol Vis Sci 1987; 28: 1353–1356.
  • To CH, Mok KH, Tse SK, Siu WT, Millodot M., Lee KL et al. In vitro bovine ciliary body epithelium in a small continuously perfused Ussing type chamber. Cell Struct Funct 1998; 23: 247–254.
  • Dong J., Delamere NA. Protein kinase C inhibits Na+‐K+‐2Cl‐‐cotransporter activity in cultured rabbit nonpigmented ciliary epithelium. Am J Physiol 1994; 267: C1553–C1560.
  • Crook RB, von Brauchitsch DK, Polansky JR. Potassium transport in nonpigmented epithelial cells of ocular ciliary body: inhibition of a Na+, K+, Cl‐ cotransporter by protein kinase C. J Cell Physiol 1992; 153: 214–220.
  • Dunn JJ, Lytle C., Crook RB. Immunolocalization of the Na‐K‐Cl cotransporter in bovine ciliary epithelium. Invest Ophthalmol Vis Sci 2001; 42: 343–353.
  • Do CW, To CH. Chloride secretion by bovine ciliary epithelium: a model of aqueous humor formation. Invest Ophthalmol Vis Sci 2000; 41: 1853–1860.
  • Wakabayashi S., Shigekawa M., Pouyssegur J. Molecular physiology of vertebrate Na+/ H+ exchangers. Physiol Rev 1997; 77: 51–74.
  • Lowe AG, Lambert A. Chloride‐bicarbonate exchange and related transport processes. Biochim Biophys Ada 1982; 694: 353–374.
  • Saito T. Na+‐H+ and HCO3‐C1‐ antiport mechanisms in the isolated ciliary body epithelium and their role in aqueous humor secretion in the rat eye. J Physiol 1992; 446: 253.
  • Mclaughlin CW, Peart D., Purves RD, Carre DA, Macknight AD, Civan MM. Effects of HCO3‐ on cell composition of rabbit ciliary epithelium: a new model for aqueous humor secretion. Invest Ophthalmol Vis Sci 1998; 39: 1631–1641.
  • Macknight AD, Mclaughlin CW, Peart D., Purves RD, Carre DA, Civan MM. Formation of the aqueous humor. Clin Exp Pharmacol Physiol 2000; 27: 100–106.
  • Counillon L., Touret N., Bidet M., Peterson‐yantorno K., Coca‐prados M., Stuart‐tilley A. et al. Na+/H+ and Cl‐/HCO3‐ antiporters of bovine pigmented ciliary epithelial cells. Pflugers Arch 2000; 440: 667–678.
  • Farahbakhsh NA, Fain GL. Volume regulation of non‐pigmented cells from ciliary epithelium. Invest Ophthalmol Vis Sci 1987; 28: 934–944.
  • Yantorno RE, Carre DA, Coca‐prados M., Krupin T., Civan MM. Whole cell patch clamping of ciliary epithelial cells during anisosmotic swelling. Am J Physiol 1992; 262: C501–C509.
  • Civan MM, Peterson‐yantorno K., Coca‐prados M., Yantorno RE. Regulatory volume decrease by cultured non‐pigmented ciliary epithelial cells. Exp Eye Res 1992; 54: 181–191.
  • Civan MM, Coca‐prados M., Peterson‐yantorno K. Pathways signaling the regulatory volume decrease of cultured nonpigmented ciliary epithelial cells. Invest Ophthalmol Vis Sci 1994; 35: 2876–2886.
  • Mccannel CA, Scanlon PD, Thibodeau S., Brubaker RF. A study of aqueous humor formation in patients with cystic fibrosis. Invest Ophthalmol Vis Sci 1992; 33: 160–164.
  • Coca‐prados M., Sanchez‐torres J., Peterson‐yantorno K., Civan MM. Association of ClC‐3 channel with Cl‐ transport by human nonpigmented ciliary epithelial cells. J Membr Biol 1996; 150: 197–208.
  • Civan MM. Transport by the ciliary epithelium of the eye. News Physiol Sci 1997; 12: 158–162.
  • Chen L., Wang L., Jacob TJ. Association of intrinsic pICl‐ with volume activated Cl‐current and volume regulation in a native epithelial cell. Am J Physiol 1999; 276: C182–C192.
  • Sanchez‐torres J., Huang W., Civan MM, Coca‐prados M. Effects of hypotonic swelling on the cellular distribution and expression of pI(Cln) in human nonpigmented ciliary epithelial cells. Curr Eye Res 1999; 18: 408–416.
  • Wang L., Chen L., Jacob TJ. The role of ClC‐3 in volume‐activated chloride currents and volume regulation in bovine epithelial cells demonstrated by antisense inhibition. J Physiol 2000; 524: 63–75.
  • Helbig H., Korbmacher C., Wohlfarth J., Berweck S., Kuhner D., Wiederholt M. Elec‐trogenic Na+‐ascorbate cotransport in cultured bovine pigmented ciliary epithelial cells. Am J Physiol 1989; 256: C44–C49.
  • Delamere NA, Williams RN. A comparative study on the uptake of ascorbic acid by the iris‐ciliary body of the rabbit, guinea pig and rat. Comp Biochem Physiol B 1987; 88: 847–849.
  • Mead A., Sears J., Sears M. Transepithelial transport of ascorbic acid by the isolated intact ciliary epithelial bilayer of the rabbit eye. J Ocul Pharmacol Ther 1996; 12: 253–258.
  • Mccannel CA, Heinrich SR, Brubaker RF. Acetazolamide but not timolol lowers aqueous humor flow in sleeping humans. Graefes Arch Clin Exp Ophthalmol 1992; 230: 518–520.
  • Bromberg BB, Gregory DS, Sears ML. Beta‐adrenergic receptors in ciliary processes of the rabbit. Invest Ophthalmol Vis Sci 1980; 19: 203–207.
  • Polansky JR, Zlock D., Brasier A., Bloom E. Adrenergic and cholinergic receptors in isolated non‐pigmented ciliary epithelial cells. Curr Eye Res 1985; 4: 517–522.
  • Wax MB, Molinoff PB. Distribution and properties of beta‐adrenergic receptors in human iris‐ciliary body. Invest Ophthalmol Vis Sci 1987; 28: 420–430.
  • Nathanson JA. Human ciliary process adrenergic receptor: pharmacological characterization. Invest Ophthalmol Vis Sci 1981; 21: 798–804.
  • Elena PP, Moulin G., Lapalus P. Characterization of beta adrenergic receptors in bovine pigmented ciliary processes. Curr Eye Res 1984;3: 743–750.
  • Crook RB, Riese K. Beta‐adrenergic stimulation of Na+, K+ Cl‐ cotransport in fetal nonpigmented ciliary epithelial cells. Invest Ophthalmol Vis Sci 1996; 37: 1047–1057.
  • Coakes RL., Brubaker RF. The mechanism of timolol in lowering intraocular pressure in the normal eye. Arch Ophthalmol 1978; 96: 2045–2048.
  • Katz IM, Hubbard WA, Getson AJ, Gould AL. Intraocular pressure decrease in normal volunteers following timolol ophthalmic solution. Invest Ophthalmol 1976; 15: 489–492.
  • Shahidullah M., Wilson WS, Millar C. Effects of timolol, terbutaline and forskolin on IOP, aqueous humor formation and ciliary cyclic AMP levels in the bovine eye. Curr Eye Res 1995; 14: 519–528.
  • Mittag TW, Tormay A., Podos SM. Vasoactive intestinal peptide and intraocular pressure: adenylate cyclase activation and binding sites for vasoactive intestinal peptide in membranes of ocular ciliary processes. J Pharmacol Exp Ther 1987; 241: 230–235.
  • Bausher LP, Horio B. Regulation of cyclic AMP production in adult human ciliary processes. Exp Eye Res 1995; 60: 43–48.
  • Horio B., Sears M., Mead A., Matsui H., Bausher L. Regulation and bioelectrical effects of cyclic adenosine monophosphate production in the ciliary epithelial bilayer. Invest Ophthalmol Vis Sci 1996; 37: 607–612.
  • Nilsson SF, Sperber GO, Bill A. Effects of vasoactive intestinal polypeptide (VIP) on intraocular pressure, facility of outflow and formation of aqueous humor in the monkey. Exp Eye Res 1986; 43: 849–857.
  • Chen S., Inoue R., Inomata H., Ito Y. Role of cyclic AMP‐induced Cl conductance in aqueous humor formation by the dog ciliary epithelium. Br J Pharmacol 1994; 112: 1137–1145.
  • Caprioli J., Sears M., Bausher L., Gregory D., Mead A. Forskolin lowers intraocular pressure by reducing aqueous inflow. Invest Ophthalmol Vis Sci 1984; 25: 268–277.
  • Caprioli J., Sears M. Forskolin lowers intraocular pressure in rabbits, monkeys, and man. Lancet 1983; 1(8331):958–960.
  • Lee PY, Podos SM, Mittag T., Severin C. Effect of topically applied forskolin on aqueous humor dynamics in cynomolgus monkey. Invest Ophthalmol Vis Sci 1984; 25: 1206–1209.
  • Neufeld AH, Jampol LM, Sears ML. Cyclic‐AMP in the aqueous humor: the effects of adrenergic agents. Exp Eye Res 1972; 14: 242–250.
  • Bartels SP, Lee SR, Neufeld AH. The effects of forskolin on cyclic AMP, intraocular pressure and aqueous humor formation in rabbits. Curr Eye Res 1987; 6: 307–320.
  • Gaasterland D., Kupfer C., Ross K., Gabelnick HL. Studies of aqueous humor dynamics in man. 3. Measurements in young normal subjects using norepinephrine and isoproterenol. Invest Ophthalmol Vis Sci 1973; 12: 267–279.
  • Potter DE, Nicholson HT, Rowland JM. Ocular hypertensive response to betaadrenoceptor agonists. Curr Eye Res 1982; 2: 711–719.
  • Mittag TW. Adrenergic and dopaminergic drugs in glaucoma. In: Ritch R., Shields MB, Krupin, T., eds. The Glaucomas: Glaucoma Therapy, 2nd ed. St Louis : Mosby, 1996: 523–527.
  • Krupin T., Wax M., Moolchandani J. Aqueous production. Trans Ophthalmol Soc UK 1986; 105: 156–161.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.