571
Views
100
CrossRef citations to date
0
Altmetric
Papers

The eye in focus: accommodation and presbyopia

, DSc PhD
Pages 207-225 | Received 24 Sep 2007, Accepted 26 Nov 2007, Published online: 15 Apr 2021

REFERENCES

  • Scheiner C. Oculus Hoc Est: Fundamentum Opticum. Oeniponti (Innsbruck): Daniel Agricola, 1619. p 37.
  • Daxecker F. Christopher Scheiner's eye studies. Doc Ophthalmol 1992; 81: 27–35.
  • Descartes R. Traité de l'Homme, 1677. Translated as Treatise on Man, by Hall TS. Cambridge: Harvard Univ Press, 1972.
  • Glasser A. Restoration of accommodation: surgical options for correction of presbyopia. Clin Exp Optom 2008; 91: 279–295.
  • Atchison DA, Smith G. Optics of the Human Eye. Oxford: Butterworth–Heinemann, 2000. p 64.
  • Helmholtz H von. Treatise on Physiological Optics, Vol. I, translated from 3rd German ed. by JPC Southall. Rochester: Opt Soc Am 1924. p 143–172.
  • Levene JR. Clinical Refraction and Visual Science. London: Butterworths, 1977. p 119–140.
  • Duke elder S, Abrams D. System of Ophthalmology. Vol. V: Ophthalmic Optics and Refraction, London: Kimpton, 1970. p 153–204.
  • Adler–grinberg D. Questioning our classical understanding of accommodation and presbyopia. Am J Optom Physiol Opt 1986; 63: 571–580.
  • Atchison DA. Accommodation and presbyopia. Ophthalmic Physiol Opt 1995; 15: 255–272.
  • Schneider H, Bacskulin A, Guthoff R. History of accommodation research. In: Guthoff R, Ludwig K, eds. Current Aspects of Human Accommodation. Kaden Verlag: Heidelberg, 2001. p 11–23.
  • Strenk SA, Strenk LM, Koretz JF. The mechanism of presbyopia. Prog Ret Eye Res 2005; 24: 379–393.
  • Young T. On the mechanism of the eye. Phil Trans Roy Soc 1801; 91: 39–72. Reprinted in Course of Lectures in Natural Philosophy and the Mechanical Arts, Vol. 2, London: Johnson, 1807. p 573–606.
  • Garner LF, Yap MKH. Changes in ocular dimensions and refraction with accommodation. Ophthalmic Physiol Opt 1997; 17: 12–17.
  • Kirschkamp T, Dunne M, Barry J–C. Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes. Ophthalmic Physiol Opt 2004; 24: 65–73.
  • Pierscionek BK, Popiolek–masajada A, Kasprzak H. Corneal shape change during accommodation. Eye 2001; 15: 766–769.
  • Yasuda A, Yamaguchi T, Ohkoshi K. Changes in corneal curvature during accommodation. J Cataract Refract Surg 2003; 29: 1297–1301.
  • He JC, Gwiazda J, Thorn F, Held R, Huang W. Change in corneal shape and corneal wavefront aberrations with accommodation. J Vision 2003; 3; 456–463.
  • Buehren T, Collins MJ, Loughridge J, Carney LG, Iskander DR. Corneal topography and accommodation. Cornea 2003; 22: 311–316.
  • Ciuffreda KJ. Accommodation and its anomalies. In: Charman WN, ed. Vision and Visual Dysfunction. Vol. 1: Visual Optics and Instrumentation. Basingstoke: Macmillan, 1991. p 231–279.
  • Ciuffreda KJ. Accommodation, the pupil and presbyopia. In: Benjamin WJ, ed. Borish's Clinical Refraction, Philadelphia: Saunders, 1998. p 77–120.
  • Glasser A, Kaufman PL. The mechanism of accommodation in primates. Ophthalmology 1999; 106: 863–872.
  • Gullstrand, A. The mechanism of accommodation. In: Helmholtz H von. Treatise on Physiological Optics, Vol. I, translated from 3rd German edition by JPC Southall. Rochester: Opt Soc Am 1924, Appendix IV. p 382–415.
  • Fincham EF. The changes in the form of the crystalline lens in accommodation. Trans Opt Soc (London) 1925; 26: 239.
  • Fincham EF. The mechanism of accommodation and the recession of the near point. Report of a Joint Discussion on Vision held at Imperial College. London: The Physical Society, 1932. p 294–308.
  • Fincham EF. The mechanism of accommodation. Br J Ophthalmol Monograph Suppl No. 8. London: Pulman, 1937.
  • Weale RA. Presbyopia. Br J Ophthalmol 1962: 46: 660–668.
  • Fisher RF. The mechanics of accommodation in relation to presbyopia. Eye 1988; 2: 646–649.
  • Rohen JW. Scanning electron microscopic studies of the zonular apparatus in human and monkey eyes. Invest Ophthalmol Vis Sci 1979; 18: 133–144.
  • Glasser A, Campbell MCW. Biometric, optical and physical changes in the isolated human crystalline lens in relation to presbyopia. Vision Res 1999; 39: 1991–2015.
  • Blank K, Enoch JM. Monocular spatial distortions induced by marked accommodation. Science 1973; 182: 393–395.
  • Hollins M. Does central human retina stretch during accommodation? Nature 1974; 251: 729–730.
  • Enoch JM. Effect of substantial accommodation on total retinal area. J Opt Soc Am 1973; 63: 899.
  • Enoch JM. Marked accommodation, retinal stretch, monocular space perception and retinal receptor orientation. Am J Optom Physiol Opt 1975; 52: 376–392.
  • Weale RA. The Senescence of Vision. Oxford: Oxford University Press, 1992.
  • Cramer A. Das Het Accommodatievermogen der Oogen Physiologisch Toegelicht. Tr. Doden. Haarlem: Leer 1855.
  • Coleman DJ. On the hydraulic suspension theory of accommodation. Trans Am Ophthalmol Soc 1986; 84: 846–868.
  • Coleman DJ. Unified model for accommodative mechanisms. Am J Ophthalmol 1970; 69: 1063–1079.
  • Fisher RF. The vitreous and lens in accommodation. Trans Ophthalmol Soc UK 1982: 102; 318–322.
  • Fisher RF. Is the vitreous necessary for accommodation in man? Br J Ophthalmol 1983; 67: 206.
  • Koretz JF, Handelman GH, Phelps brown N. Analysis of human crystalline lens curvature as a function of accommodative state and age. Vision Res 1984; 24: 1141–1151.
  • Koretz JF, Cook CA, Kaufman PL. Accommodation and presbyopia in the human eye. Invest Ophthalmol Vis Sci 1997; 38: 569–578.
  • Koretz JF, Cook CA, Kaufman PL. Aging of the human lens: changes in lens shape with accommodation and with accommodative loss. J Opt Soc Am A 2002; 19: 144–151.
  • Rosales P, Dubbelman M, Marcos S, Van der heijde R. Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging. J Vision 2006; 6: 1057–1067.
  • Ziebarth NM, Manns F, Uhlhorn S, Venkatraman AS, Parel J–M. Non–contact optical measurement of lens capsule thickness in human, monkey and rabbit post–mortem eyes. Invest Ophthalmol Vis Sci 2005; 46: 1690–1697.
  • Patnaik B. A photographic study of accommodative mechanisms: changes in lens nucleus during accommodation. Invest Ophthalmol 1967; 6: 601–611.
  • Drexler W, Baumgartner A, Findl O, Hitzenberger CK, Fercher AF. Biometric investigation of changes in the anterior eye segment during accommodation. Vision Res 1997; 37: 2789–2800.
  • Strenk SA, Strenk LA, Semmlow JL, Demarco JK. Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross–sectional area. Invest Ophthalmol Vis Sci 2004; 45: 539–545.
  • Wilson, RS. Does the lens diameter increase or decrease during accommodation? Human accommodation studies: a new technique using infra–red retro–illumination video photography and pixel unit measurements. Trans Am Ophthalmol Soc 1997; 95: 261–267.
  • Brown NP. The change in shape and internal form of the lens of the eye on accom modation. Exp Eye Res 1973; 15: 441–459.
  • Strenk SA, Semmlow JL, Strenk LM, Munoz P, Gronland–jacob J, Demarco JK. Age–related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Ophthalmol Vis Sci 1999; 40: 1162–1169.
  • Gullstrand A. In: Helmholtz H von. Treatise on Physiological Optics, Vol. I, translated from 3rd German ed. by JPC Southall. Rochester: Opt Soc Am Appendix II, 1924. p 339–350.
  • Pierscionek B, Weale RA. Presbyopia—a maverick of human aging. Arch Gerontol Geriatr 1995; 20: 229–240.
  • Smith G, Pierscionek B. The optical structure of the lens and its contribution to the refractive status of the eye. Ophthalmic Physiol Opt 1998; 18: 21–29.
  • Garner LF, Smith G. Changes in equivalent and gradient refractive index of the crystalline lens with accommodation. Optom Vis Sci 1997; 74: 114–119.
  • Tscherning M. Physiologic Optics. Translated by Weiland C. Philadelphia: Keystone, 1924. p 192–228.
  • Schachar RA. Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation. Ann Ophthalmol 1992; 24: 445–452.
  • Schachar RA, Black TD, Kash RL, Cudmore DP, Schanzlin DJ. The mechanism of accommodation and presbyopia in the primate. Ann Ophthalmol 1995; 27: 59–67.
  • Schachar RA. Qualitative effect of zonular tension on freshly extracted intact human crystalline lenses: implications for the mechanism of accommodation. Invest Ophthalmol Vis Sci 2004; 45: 2691–2695.
  • Baikoff G, Lutun E, Wei J, Ferraz C. Anterior chamber optical coherence tomography study of human natural accommodation in a 19‐year‐old albino. J Cataract Refract Surg 2004; 30: 696–701.
  • Schachar RA, Huang T, Huang X. Mathematical proof of Schachar's hypothesis of accommodation. Ann Ophthalmol 1993; 25: 5–9.
  • Burd HJ, Judge SJ, Flavell MJ. Mechanics of accommodation of the human eye. Vision Res 1999; 39: 1591–1595.
  • Fincham, EF, Walton J. The reciprocal actions of accommodation and convergence. J Physiol 1957; 137: 488–508.
  • Schor CM, Ciuffreda KJ. Vergence Eye Movements: Basic and Clinical Aspects. Boston: Butterworths, 1983.
  • Loewenfeld IE. The Pupil: Anatomy, Physiology and Clinical Applications. London: Butterworth–Heinemann, 1999. p 295–317.
  • Stakenburg M. Accommodation without pupillary constriction. Vision Res 1991; 31: 267–273.
  • Phillips NJ, Winn B, Gilmartin B. Absence of pupil response to blur–driven accommodation. Vision Res 1992; 32: 1775–1779.
  • Schaeffel F, Wilhelm H, Zrenner E. Inter–individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors. J Physiol 1993; 462: 301–320.
  • Wilhelm H, Schaeffel F, Wilhelm B. Experimentelle und theoretische Studien die Altersabhängigkeit der Pupillennahreaktion. Klin Monatsbl Augenheilkd 1993; 2043: 110–116.
  • Kasthurirangan S, Glasser A. Age related changes in the characteristics of the near pupil response. Vision Res 2006; 46: 1393–1403.
  • Radhakrishnan H, Charman WN. Age–related changes in static accommodation and accommodative miosis. Ophthalmic Physiol Opt 2007; 27: 342–352.
  • Davson H. Physiology of the Eye, 5th ed. London: Macmillan, 1990. p 767–782.
  • Alpern M. Accommodation. In: Davson H, ed. The Eye: Vol. 3 Muscular Mechanisms. New York: Academic Press, 1962. p 191–229.
  • Toates FM. Accommodation function of the human eye. Physiol Reviews 1972; 52: 828–863.
  • Gilmartin B. A review of the role of sympathetic innervation of the ciliary muscle in ocular accommodation. Ophthalmic Physiol Opt 1986; 6: 23–37.
  • Gilmartin B. Autonomic correlates of near–vision in emmetropia and myopia. In: Rosenfield M, Gilmartin B, eds. Myopia and Nearwork. London: Butterworth–Heinemann, 1998. p 117–146.
  • Gilmartin B. Pharmacology of accommodative adaptation. In: Franzén O, Richter H, Stark L, eds. Accommodation and Vergence Mechanisms in the Visual System. Basel: Birkhäuser Verlag, 2000. p 141–150.
  • Mays LE, Gamlin PDR. Neuronal circuitry controlling the near response. Curr Opin Neurobiol 1995; 5: 763–768.
  • Mays LE, Gamlin PDR. Neuronal circuits for accommodation and vergence in the primate. In: Franzén O, Richter H, Stark L, eds. Accommodation and Vergence Mechanisms in the Visual System. Basel: Birkhäuser Verlag, 2000. p 1–9.
  • Judge SJ, Flitcroft DI. Control of accommodation. In: Burnstock G, Sillito AM, eds. Nervous Control of the Eye. Amsterdam: Harwood Academic Pub, 2000, p 93–115.
  • Maddox EE. The Clinical Use of Prisms. 2nd ed. Bristol: John Wright & Co, 1893.
  • Heath GC. Components of accommodation. Am J Optom Arch Am Acad Optom 1956; 33: 569–579.
  • Heron G, Charman WN, Gray LS. Accommodation responses and ageing. Invest Ophthalmol Vis Sci 1999; 40: 2872–2883.
  • Chen L, Kruger PB, Hofer H, Singer B, Williams DR. Accommodation with higher–order monochromatic aberrations corrected with adaptive optics. J Opt Soc Am A 2006; 23: 1–8.
  • Hung GK, Ciuffreda KJ, Rosenfield M. Proximal contribution to a linear static model of accommodation and vergence. Ophthalmic Physiol Opt 1996; 16: 31–41.
  • Leibowitz HW, Owens DA. New evidence for the intermediate position of relaxed accommodation. Doc Ophthalmol 1978; 46: 133–147.
  • Rosenfield M, Ciuffreda KJ, Hung GK, Gilmartin B. Tonic accommodation—A review. 1. Basic aspects. Ophthalmic Physiol Opt 1993; 13: 266–284.
  • Rosenfield M, Ciuffreda KJ, Hung GK, Gilmartin B. Tonic accommodation—A review. 2. Accommodative adaptation and clinical aspects. Ophthalmic Physiol Opt 1994; 14: 265–277.
  • Marg E. An investigation of voluntary as distinguished from reflex accommodation. Am J Optom Arch Am Acad Optom 1951; 28: 347–356.
  • Cornsweet TN, Crane HD. Training the visual accommodation system. Vision Res 1973; 13: 713–715.
  • Provine RR, Enoch JM. On voluntary ocular accommodation. Percept Psychophys 1975; 17: 209–212.
  • Van der wildt GJ, Bouman MA, Va de kraats J. The effect of anticipation on the transfer function of the human lens system. Optica Acta 1974; 21: 843–860.
  • Campbell FW, Westheimer G. Dynamics of the focussing response of the human eye. J Physiol 1960; 151: 285–295.
  • Phillips SD, Shirachi D, Stark L. Analysis of accommodation times using histogram information. Am J Optom Arch Am Acad Optom 1972; 49: 389–401.
  • Tucker J, Charman WN. Reaction and response times for accommodation. Am J Optom Physiol Opt 1979; 56: 490–503.
  • Beers APA, Van der heijde GL. In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism. Vision Res 1994; 34: 2897–2905.
  • Kasthurirangan S, Vilupuru AS, Glasser A. Amplitude dependent accommodative dynamics in humans. Vision Res 2003; 43: 2945–2956.
  • Kasthurirangan S, Glasser A. Influence of amplitude and starting point on accommodative dynamics in humans. Invest Ophthalmol Vis Sci 2005; 46: 3463‐3472.
  • Charman WN, Heron G. Fluctuations in accommodation: a review. Ophthalmic Physiol Opt 1988; 8: 153–164.
  • Charman WN. Accommodation and the through–focus changes of the retinal image. In: Franzén O, Richter H, Stark L, eds. Accommodation and Vergence Mechanisms in the Visual System. Basel: Birkhäuser Verlag, 2000. p 115–127.
  • Winn B. Accommodative microfluctuations: a mechanism for steady–state control of accommodation. In: Franzén O, Richter H, Stark L, eds. Accommodation and Vergence Mechanisms in the Visual System. Basel: Birkhäuser Verlag, 2000. p 129–140.
  • Charman WN. Static accommodation and the minimum angle of resolution. Am J Optom Physiol Opt 1986; 63: 915–921.
  • Johnson CA. Effects of luminance and stimulus distance on accommodation and visual resolution. J Opt Soc Am 1976; 66: 138–142.
  • Atchison DA, Fisher SW, Pedersen CA, Ridall PG. Noticeable, troublesome and objectionable limits of blur. Vision Res 2005; 45: 1967–1974.
  • Ciuffreda KJ, Selenov A, Wang B, Vasudevan B, Zikos G, Ali SR. ‘Bothersome blur’: a functional unit of visual perception. Vision Res 2006; 46: 895–901.
  • Gwiazda J, Thorn F, Bauer J, Held R. Myopic children show insufficient accommodative response to blur. Invest Ophthalmol Vis Sci 1983; 34: 690–694.
  • Campbell FW. Correlation of accommodation between the two eyes. J Opt Soc Am 1960; 50: 738.
  • Clark MR, Crane HD. Dynamic interactions in binocular vision. In: Monty RA, Fisher DF, eds. Eye Movements and the Higher Psychological Processes. Sydney: Halstead Press, 1978. p 77–88.
  • Heron G, Winn B. Binocular accommodation reaction and response times for normal observers. Ophthalmic Physiol Opt 1989; 9: 176–183.
  • Rosenberg R, Flax N, Brodsky B. Accommodative levels under conditions of asymmetric convergence. Am J Optom Arch Am Acad Optom 1953; 30: 244–254.
  • Marran L, Schor CM. Lens induced aniso–accommodation. Vision Res 1998; 38: 3601–3619.
  • Marran L, Schor CM. The effect of target proximity on the aniso–accommodative response. Ophthalmic Physiol Opt 1999; 19: 376–392.
  • Carlin P, Winn B, Strang NC, Culhane H, Eadie AS. Objective determination of the aniso–accommodative range. Invest Ophthalmol Vis Sci 1996; 37: S163.
  • Koh LH, Charman WN. Accommodative responses to anisoaccommodative targets. Ophthalmic Physiol Opt 1998; 18: 254–262.
  • Campbell FW. The minimum quantity of light required to elicit the accommodation reflex in man. J Physiol (London) 1954; 123: 357–366.
  • The relationship between tonic accommodation and refractive error. Invest Ophthalmol Vis Sci 1987; 28: 997–1004.
  • Fletcher RJ. Astigmatic accommodation. Parts I and II. Br J Physiol Opt 1951: 8; 73–94.
  • Brzezinski MA. Review: astigmatic accommodation (sectional accommodation): a form of dynamic astigmatism. Aust J Optom 1982; 65: 5–11.
  • Millodot M, Thibault C. Variation of astigmatism with accommodation and its relationship with dark focus. Vision Res 1985; 25: 297–301.
  • Nicholson SB, Garzia RP. Astigmatism at nearpoint: adventitious, purposeful and environmental influences. J Am Optom Assoc 1988; 59: 936–941.
  • Ukai K, Ichihashi Y. Changes in ocular astigmatism over the whole range of accommodation. Optom Vis Sci 1991; 68: 813–818.
  • Cheng H, Barnett JK, Vilupuru AS, Marsack JD, Kasthurirangan S, Applegate RA, Roorda A. A population study on changes in wave aberrations with accommodation. J Vision 2004; 4: 272–280.
  • Radhakrishnan H, Charman WN. Changes in astigmatism with accommodation. Ophthalmic Physiol Opt 2007; 27: 275–280.
  • Ivanoff A. About the spherical aberration of the eye. J Opt Soc Am 1956; 46: 901–903.
  • Jenkins TCA. Aberrations of the eye and their effects on vision: 1. Br J Physiol Opt 1963; 20: 59–91.
  • Koomen M, Tousey RA, Scolnick R. The spherical aberration of the human eye. J Opt Soc Am 1949; 39; 370–376.
  • Van den brink G. Measurement of the geometrical aberrations of the eye. Vision Res 1962; 2: 233–244.
  • Atchison DA. Recent advances in representation of monochromatic aberrations of human eyes. Clin Exp Optom 2004; 87: 138–148.
  • Atchison DA. Recent advances in measurement of monochromatic aberrations of human eyes. Clin Exp Optom 2005; 88: 5–27.
  • Ninomiya S, Fujikado T, Kuroda T, Maeda N, Tano Y, Oshika T, Hirohara Y, Mihashi T. Changes of ocular aberration with accommodation. Am J Ophthalmol 2002; 134: 924–926.
  • Hazel CA, Cox MJ, Strang NC. Wavefront aberration and its relationship to the accommodative stimulus–response func tion in myopic subjects. Optom Vis Sci 2003; 80: 151–158.
  • Plainis S, Ginis HS, Pallikaris A. The effect of ocular aberrations on steady–state errors of accommodative response. J Vision 2005; 5: 466–477.
  • Radhakrishnan H, Charman WN. Age–related changes in ocular aberrations with accommodation. J Vision 2007; 7: 11.1–21.
  • Ivanoff A. Les Aberrations de l'Oeil. Paris: Editions Revue d'Optiqe, 1953.
  • Le grand Y. Form and Space Vision. Translated by M Millodot and GC Heath. Bloomington: Indiana UP, 1967.
  • Atchison DA, Smith G, Waterworth MD. Theoretical effect of refractive error and accommodation on longitudinal chromatic aberration of the eye. Optom Vis Sci 1993; 70: 716–722.
  • Charman WN, Tucker J. Accommodation and color. J Opt Soc Am 1978; 68:459–471.
  • Campbell FW, Westheimer G. Factors influencing accommodation responses of the human eye. J Opt Soc Am 1959; 49: 568–571.
  • Smithline LM. Accommodative response to blur. J Opt Soc Am 1974; 64: 1512–1516.
  • Stark L, Takahashi Y. Absence of an odd–error signal mechanism in human accommodation. IEEE Trans Biomed Eng 1965; 12: 138–146.
  • Fincham EF. The accommodation reflex and its stimulus. Br J Ophthalmol 1951; 35: 381–393.
  • Kruger PB, Mathews S, Aggarwala KR, Sánchez N. Chromatic aberration and ocular defocus: Fincham revisited. Vision Res 1993; 33: 1397–1411.
  • Kruger PB, Mathews S, Katz M, Aggarwala KR, Nowbotsing S. Accommodation without feedback suggests directional signals specify ocular focus. Vision Res 1997; 37: 2511–2526.
  • Aggarwala KR, Kruger ES, Mathews S, Kruger PB. Spectral bandwidth and ocular accommodation. J Opt Soc Am A 1995; 12: 450–455.
  • Rucker FJ, Kruger PB. Accommodation responses to stimuli in cone contrast space. Vision Res 2004; 44: 2931–2944.
  • Kruger PB, Rucker FJ, Hu C, Rutman H, Schmidt NW, Roditis V. Accommodation with and without short–wavelength–sensitive cones and chromatic aberration. Vision Res 2005; 45: 1265–1274.
  • Wilson BJ, Decker KE, Roorda A. Monochromatic aberrations provide an odd–error cue to focus direction. J Opt Soc Am A 2002; 19: 833–839.
  • Fernández EJ, Artal P. Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics. J Opt Soc Am A 2005; 22: 1732–1738.
  • López–gil N, Rucker FJ, Stark LR, Badar M, Borgovan T, Burke S, Kruger PB. Effect of third–order aberrations on dynamic accommodation. Vision Res 2007; 47: 755–765.
  • Stark L. Presbyopia in light of accommodation. Am J Optom Physiol Opt 1988; 65: 407–416.
  • Wyatt HJ. Some aspects of the mechanics of accommodation. Vision Res 1988; 28: 75–86.
  • Wyatt HJ. Application of a simple mechanical model of accommodation to the aging eye. Vision Res 1993; 33: 731–738.
  • Beers APA, Van der heijde GL. Age–related changes in accommodation. Optom Vis Sci 1996; 73: 235–242.
  • Koretz JF, Handelman GH. Model of the accommodative mechanism in the human eye. Vision Res 1982: 22: 917–927.
  • Koretz JF, Handelman GH. A model for accommodation in the young human eye: the effects of lens elastic anisotropy on the mechanism. Vision Res 1983; 23: 1679–1686.
  • Burd HJ, Judge SJ, Cross JA. Numerical modelling of the accommodating lens. Vision Res 2002; 42: 2235–2251.
  • Judge SJ, Burd HJ. Modelling the mechanics of accommodation and presbyopia. Ophthalmic Physiol Opt 2002; 22: 397–400.
  • Martin H, Guthoff R, Terwee T, Schmitz K–P. Comparison of the accommodation theories of Coleman and Helmholtz by finite element simulations. Vision Res 2005; 45: 2910–2915.
  • Stark L. Neurological Control Systems. New York: Plenum Press, 1968. p 185–230.
  • Yoshida T, Watanabe A. Control mechanism of the accommodation–vergence eye–movement system in human eyes. Bull NHK Broadcast Sci Res Labs 1969; 3: 72–80.
  • O'neill WD, Sanathanan CK, Brodkey JS. A minimum variance, time optimal, control system model of human lens accommodation. IEE Trans Systems Sci Cybern 1969; SCC–5: 290–299.
  • Toates FM. A model of accommodation. Vision Res 1970; 10: 1069–1076.
  • Toates FM. Studies on the control of accommodation and convergence. Measur Control 1972; 5: 58–61.
  • Krishnan VV, Stark L. Integral control in accommodation. Comput Programs Biomedicine 1975; 4: 237–245.
  • Semmlow JL. Oculomotor responses to near stimuli: the near triad. In: Zuber BL, ed. Models of Oculomotor Behaviour. Boca Raton Florida: CRC Press, 1981. p 161–191.
  • Semmlow JL, Hung GK. The near response: theories of control. In: Schor CM, Ciuffreda KJ, eds. Vergence Eye Movements: Basic and Clinical Aspects. London: Butterworths, 1983. p 175–195.
  • Schor CM, Alexander J, Cormack L, Stevenson S. Negative feedback model of proximal convergence and accommodation. Ophthalmic Physiol Opt 192; 12: 307–318.
  • Hung G, Ciuffreda KJ, Semmlow JL, Hokoda SC. Model of static accommodative behaviour in human amblyopia. IEEE Trans Biomed Eng 1983; BME–30: 665–672.
  • Hung GK, Semmlow JL, Ciuffreda KJ. The near response: modelling, instrumentation and clinical applications. IEEE Trans Biomed Eng 1984: BME–31: 910–919.
  • Saladin JJ. Convergence insufficiency, fixation disparity and control systems analysis. Am J Optom Physiol Opt 1986; 63: 645–653.
  • Donders FC. On the Anomalies of Accommodation and Refraction of the Eye. Translated by Moore WD. London: New Sydenham Soc, 1864.
  • Weale RA. Why we need glasses before a zimmer–frame. Vision Res 2000; 40: 2233–2240.
  • Hamasaki D, Ong J, Marg E. The amplitude of accommodation in presbyopia. Am J Optom Arch Am Acad Optom 1956; 33: 3–14.
  • Hofstetter HW. A longitudinal study of the amplitude changes in presbyopia. Am J Optom Arch Am Acad Optom 1965; 42: 3–8.
  • Ramsdale C, Charman WN. A longitudinal study of the changes in the static accommodation response. Ophthalmic Physiol Opt 1989; 9: 255–263.
  • Charman WN. The path to presbyopia—straight or crooked? Ophthalmic Physiol Opt 1989; 9: 424–430.
  • Miranda MN. The geographic factor in the onset of presbyopia. Tr Am Ophthalmol Soc 1979; 77: 603–621.
  • Weale RA. Human ocular aging and ambient temperature. Br J Ophthalmol 1981; 65: 869–870.
  • Kragha IK, Hofstetter HW. Bifocal adds and environmental temperature. Am J Optom Physiol Opt 1986; 63: 372–376.
  • Hofstetter HW. A comparison of Duane's and Donder's tables of the amplitude of the amplitude of accommodation. Am J Optom Arch Am Acad Optom 1944; 21: 345–363.
  • Duane A. Studies in monocular and binocular accommodation with their clinical applications. Am J Ophthalmol 1922; Ser 3. 5: 865–877.
  • Coates WR. Amplitudes of accommodation in South Africa. Br J Physiol Opt 1955; 12: 76–86.
  • Turner MJ. Observations on the normal subjective amplitude of accommodation. Br J Physiol Opt 1958; 15: 70–100.
  • Ayrshire Study Circle. An investigation into accommodation. Br J Physiol Opt 1964; 21: 31–35.
  • Fitch RC. Procedural effects on the manifest human amplitude of accommodation. Am J Optom Arch Am Acad Optom 1971; 48: 918–926.
  • Somers WW, Ford CA. Effect of relative distance magnification on the monocular amplitude of accommodation. Am J Optom Physiol Opt 1983; 60: 920–924.
  • Atchison DA, Capper EJ, Mccabe KL. Critical subjective measurement of amplitude of accommodation. Optom Vis Sci 1994; 71: 699–706.
  • Pitts DG. The effects of aging on selected visual functions: dark adaptation, visual acuity, stereopsis and brightness contrast. In: Sekuler R, Kline D, Dismukes K, eds. Aging and Human Visual Function. New York: Liss 1982. p 131–59.
  • Owsley C, Sekuler R, Siemsen D. Contrast sensitivity throughout adulthood. Vision Res 1983; 23: 689–699.
  • Mordi JA, Ciuffreda KJ. Dynamic aspects of accommodation: age and presbyopia. Vision Res 2004; 44: 591–601.
  • Kasthurirangan S, Glasser A. Age related changes in accommodative dynamics in humans. Vision Res 2006; 46: 1507–1519.
  • Heron G, Charman WN, Schor C. Dynamics of accommodation responses to abrupt changes in target vergence as a function of age. Vision Res 2001: 41; 507–519.
  • Heron G, Charman WN, Gray LS. Accommodation dynamics as a function of age. Ophthalmic Physiol Opt 2002: 22; 389–396.
  • Heron G, Charman WN. Accommodation as a function of age and the linearity of the response dynamics. Vision Res 2004: 44; 3119–3130.
  • Mordi JA. Ciuffreda KJ. Static aspects of accommodation: age and presbyopia. Vision Res 1998; 38: 1643–1653.
  • Kalsi M, Heron G, Charman WN. Changes in the static accommodation response with age. Ophthalmic Physiol Opt 2001; 21: 77–84.
  • Calver RI, Cox MJ, Elliott DB. Effect of aging on the monochromatic aberrations of the human eye. J Opt Soc Am A 1999; 16: 2069–2078.
  • Ciuffreda KJ, Kenyon RV. Accommodative vergence and accommodation in normals, amblyopes and strabismics. In: Schor CM, Ciuffreda KJ, eds. Vergence Eye Movements: Basic and Clinical Aspects. Boston: Butterworths, 1983. p 101–173.
  • Rosenfield M, Ciuffreda KJ. Accommodative convergence and age. Ophthalmic Physiol Opt 1990; 10: 403–404.
  • Bruce AS, Atchison DA, Bhoola H. Accommodation–convergence relationships and age. Invest Ophthalmol Vis Sci 1995; 36: 406–413.
  • Eskridge JB. The AC/A ratio and age—a longitudinal study. Am J Optom Physiol Opt 1983; 60: 911–913.
  • Baker FJ, Gilmartin B. The effect of incipient presbyopia on the correspondence between accommodation and vergence. Graefe's Arch Clin Exp Ophthalmol 2002; 240: 488–494.
  • Ciuffreda KJ, Rosenfield M, Chen H–W. The AC/A ratio, age and presbyopia. Ophthalmic Physiol Opt 1997; 17: 307–315.
  • Pipe DM, Rapley LJ. Ocular Anatomy and Histology. London: Association of Dispensing Opticians, 1984. p 109–111.
  • Glasser A, Campbell MCW. Presbyopia and the optical changes in the human crystalline lens with age. Vision Res 1998; 38: 209–229.
  • Glasser A, Croft MA, Kaufman PL. Aging of the human crystalline lens. Int Ophthalmol Clin 2001; 41: 1–15.
  • Rosen AM, Denham DB, Fernandez V, Borja D, Ho A, Manns F, Parel J–M, Augusteyn RC. In vitro dimensions and curvatures of human lens. Vision Res 2006; 46: 1002–1009
  • Dubbelman M, Van der heijde GL, Weeber HA. Change in shape of the aging human crystalline lens with accommodation. Vision Res 2005; 45:117–132.
  • Wyatt HJ, Fisher RF. A simple view of age–related changes in the shape of the lens of the human eye. Eye 1995; 9: 772–775.
  • Moffat BA, Atchison DA, Pope JM. Age–related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro–imaging in vitro. Vision Res 2002; 42: 1683–1693.
  • Jones CE, Atchison DA, Meder R, Pope JM. Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging. Vision Res 2005; 45: 2352–2366.
  • Goncharov AV, Dainty C. Wide–field schematic eye models with gradient–index lens. J Opt Soc Am A 2007; 24: 2157–2174.
  • Navarro R, Palos F, González L. Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses. J Opt Soc Am A 2007; 24: 2175–2185.
  • Fisher RF. The significance of the shape of the lens and capsular energy changes during accommodation. J Physiol 1969; 201: 21–47.
  • Fisher RF. Elastic constants of the human lens capsule. J Physiol 1969; 201: 1–19.
  • Fisher RF. The elastic constants of the human lens. J Physiol 1971; 212: 147–180.
  • Fisher RF. Presbyopia and the changes with age in the human crystalline lens. J Physiol 1973; 228: 765–779.
  • Fisher RF, Pettet BE. Presbyopia and the water content of the human crystalline lens. J Physiol 1973; 234: 443–447.
  • Pau H, Kranz J. The increasing sclerosis of the human lens with age and its relevance to accommodation and presbyopia. Graefes Arch Clin Exper Ophthalmol 1991; 229: 294–296.
  • Burd HJ, Wilde GS, Judge SJ. Can reliable values of Young's modulus be deduced from Fisher's (1971) spinning lens measurements? Vision Res 2006; 46: 1346–1360.
  • Koretz JF, Cook CA, Kaufman PL. Aging of the human lens: changes in lens shape at zero–diopter accommodation. J Opt Soc Am A 2002; 18: 265–272.
  • Koretz JF, Strenk SA, Strenk LM, Semmlow JL. Scheimpflug and high resolution magnetic resonance imaging of the anterior segment: a comparative study. J Opt Soc Am A 2004; 21: 346–354.
  • Pierscionek B. Presbyopia—effect of refractive index. Clin Exp Optom 1990; 73: 23–30.
  • Smith G, Pierscionek BK, Atchison DA. The optical modelling of the human lens. Ophthalmic Physiol Opt 1991; 11: 359–369.
  • Smith G, Atchison DA, Pierscionek BK. Modeling the power of the aging human lens. J Opt Soc Am A 1992; 9: 2111–2116.
  • Tamm S, Tamm E, Rohen JW. Age–related changes of the human ciliary muscle. A quantitative morphometric study. Mech Ageing Dev 1992; 62: 209–221.
  • Pardue MT, Sivak JG. Age–related changes in human ciliary muscle. Optom Vis Sci 2000; 77: 204–210.
  • Strenk SA, Strenk LM, Semmlow, JL. High resolution MRI study of circumlental space in the aging eye. J Refract Surg 2000; 16: S659–S660.
  • Swegmark G. Studies with impedance cyclography on human ocular accommodation at different ages. Acta Ophthalmol Scand 1969; 46: 1186–1206.
  • Fisher RF. The force of contraction of the human ciliary muscle during accommodation. J Physiol 1977; 270: 51–74.
  • Fisher RF. The ciliary body in accommodation. Trans Ophthalmol Soc UK 1986; 105: 208–219.
  • Farnsworth PN, Shyne SE. Anterior zonular shifts with age. Exp Eye Res 1979; 28: 291–297.
  • Sakabe I, Oshika T, Lim SJ, Apple DJ. Anterior shift of zonular insertion onto the anterior surface of human crystalline lens with age. Ophthalmology 1998; 105: 295–299.
  • Brown N. The shape of the lens equator. Exp Eye Res 1974; 19: 571–576.
  • Tamm E, Lutjen–drecoll E, Jungkunz W, Rohn JW. Posterior attachment of ciliary muscle in young, accommodating old, presbyopic monkeys. Invest Ophthalmol Vis Sci 1991; 32: 1678–1692.
  • Tamm E, Croft MA, Jungkunz W, Rohen JW. Age–related loss of ciliary muscle mobility in rhesus monkeys. Arch Ophthalmol 1992; 110: 871–876.
  • Balazs EQA, Denlinger JL. The vitreous. In: Davson H, ed. The Eye, Vol 1A, 3rd ed. London: Academic Press. p 533–588.
  • Weale RA. Presbyopia toward the end of the 20th Century. Surv Ophthalmol 1989; 34: 15–30.
  • Cawford KS, Kaufman PL, Bito LZ. The role of the iris in accommodation of rhesus monkeys. Invest Ophthalmol Vis Sci 1990; 31: 2185–2190.
  • Pierscionek B. What we know and understand about presbyopia. Clin Exp Optom 1993; 76: 83–90.
  • Gilmartin B. The aetiology of presbyopia: a summary of the role of lenticular and extralenticular structures. Ophthalmic Physiol Opt 1995; 15: 431–437.
  • Croft MA, Glasser A, Kaufman PL. Accommodation and presbyopia. Int Ophthalmol Clin 2001: 41; 33–46.
  • Duane A. Are the current theories of accommodation correct? Am J Ophthalmol 1925; 8: 196–202.
  • Bito LZ, Miranda OC. Accommodation and presbyopia. In: Reinecke RD, ed. Ophthalmology Annual 1989. New York: Raven Press, 1989. p 102–128.
  • Koretz JF, Handelman GH. Modeling age–related loss in the human eye. Math Modelling 1986; 7: 1003–1014.
  • Koretz JF, Handelman GH. How the human eye focuses. Sci Am 1988; 259: 64–71.
  • Banks MS. The development of visual accommodation during early infancy. Child Development 1980; 51: 646–666.
  • Banks MS. Infant refraction and accommodation. Int Ophthalmol Clin 1980; 20: 205–232.
  • Brookman KE. Ocular accommodation in human infants. Am J Optom Physiol Opt 1983; 60: 91–99.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.