327
Views
48
CrossRef citations to date
0
Altmetric
Human Impact and Implication for Geomorphological Processes

Assessment of landslide age, landslide persistence and human impact using airborne laser scanning digital terrain models

, , &
Pages 135-156 | Received 19 Mar 2011, Accepted 09 Dec 2011, Published online: 15 Nov 2016

References

  • Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F. and Reichenbach, P., 2007. Identification and mapping of recent rainfall‐induced landslides using elevation data collected by airborne Lidar. Natural Hazards and Earth System Science, 7, 637–650.
  • Baum, R.L., Coe, J.A., Godt, J.W., Harp, E.L., Reid, M.E., Savage, W.Z., Schulz, W.H., Brien, D.L., Chleborad, A.F., Mckenna, J.P. and Michael, J.A., 2005. Regional landslide‐hazard assessment for Seattle, Washington, USA. Landslides, 2, 266–279.
  • Bell, R., 2007. Lokale und regionale Gefahren‐ und Risikoanalyse gravitativer Massenbewegungen an der Schwäbischen Alb. PhD diss, Mathematisch‐Naturwissenschaftlichen Fakultät. Rheinische Friedrich‐Wilhelms‐Universität, Bonn, Germany. http://hss.ulb.uni‐bonn.de/2007/1107/1107.htm, 17‐Feb‐12.
  • Bibus, E., 1986. Die Rutschung am Hirschkopf bei Mössingen (Schwäbische Alb). Geowissenschaftliche Rahmenbedingungen ‐Geoökologische Folgen. Geoökodynamik, 7, 333–360.
  • Bleich, E., 1960. Das Alter des Albtraufs. Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg, 115, 39–92.
  • Booth, A.M., Roering, J.J. and Perron, J.T., 2009. Automated landslide mapping using spectral analysis and high‐resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology, 109, 132–147.
  • Brennecke, M., 2006. Erstellung einer Inventarkarte gravitativer Massenbewegungen an der Schwäbischen Alb. Kartierungaus aus Luftbildern und einem digitalen Höhenmodell. Diploma thesis (unpublished), Department of Geography, University of Bonn, Germany.
  • Brunsden, D., 1993. The persistence of landforms. Zeitschrift für Geomorphologie, Suppl. 93, 13–28.
  • Chen, C.Y., 2009. Sedimentary impacts from landslides in the Tachia River Basin, Taiwan. Geomorphology, 105, 355–365.
  • Conway, S.J., Decaulne, A., Balme, M.R., Murray, J.B. and Towner, M.C., 2010. A new approach to estimating hazard posed by debris flows in the Westfjords of Iceland. Geomorphology, 114, 556–572.
  • Corsini, A., Borgatti, L., Cervi, F., Dahne, A., Ronchetti, F. and Sterzai, P., 2009. Estimating mass‐wasting processes in active earth slides – Earth flows with time‐series of high‐resolution DEMs from photogrammetry and airborne LiDAR. Natural Hazards and Earth System Science, 9, 433–439.
  • Crozier, M.J., 2010. Landslide geomorphology: An argument for recognition, with examples from New Zealand. Geomorphology, 120, 3–15.
  • Crozier, M.J. and Glade, T., 2005. Landslide hazard and risk: issues, concepts, and approach. In: Glade, T., Anderson, M.G. and Crozier, M.J. (eds), Landslide Hazard and Risk. Wiley, Chichester. 1–38.
  • Cruden, D.M. and Varnes, D.J., 1996. Landslide types and processes. In: Turner, A.K. and Schuster, R.L. (eds), Landslides: Investigation and Mitigation. National Academey Press, Washington, DC. 36–75.
  • Dikau, R., Brunsden, D., Schrott, L. and Ibsen, M. (eds), 1996. Landslide Recognition. Identification, Movement and Causes, John Wiley and Sons Ltd, Chichester.
  • Fundinger, A., 1985. Ingenieurgeologische Untersuchung und geologische Kartierung (Dogger/Malm) der näheren Umgebung der Rutschungen am Hirschkopf bei Mössingen und am Irrenberg bei Thanheim (Baden‐Würrtemberg). Diploma thesis (unpublished), Geowissenschaftliche Fakultät Eberhard‐Karls‐Universität Tübingen, Germany.
  • Geyer, O.F. and Gwinner, M.P., 1997. Die Schwäbische Alb und ihr Vorland. – Sammlung geologischer Führer, Gebrüder Bornträger, Berlin, Stuttgart.
  • Gillon, K.A., Wooten, R.M., Latham, R.L., Witt, A.W., Douglas, T.J., Bauer, J.B. and Fuemmeler, S.J., 2009. Integrating GIS‐based geologic mapping, LiDAR‐based lineament analysis and site specific rock slope data to delineate a zone of existing and potential rock slope instability located along the grandfather mountain window‐Linville Falls shear zone contact, Southern Appalachian Mountains, Watauga County, North Carolina. 43rd U.S. Rock Mechanics Symposium and 4th U.S.‐Canada Rock Mechanics Symposium .
  • Glade, T., 2001. Landslide hazard assessment and historical landslide data – an inseparable couple? In: Glade, T., Frances, F. and Albini, P. (eds), The Use of Historical Data in Natural Hazard Assessments. Kluwer Academic Publishers, Dordrecht. 153–168.
  • Glade, T. and Crozier, M.J., 2005. A review of scale dependency in landslide hazard and risk analysis. In: Glade, T., Anderson, M.G. and Crozier, M.J. (eds), Landslide Hazard and Risk. Wiley, Chichester. 75–138.
  • Glenn, N.F., Streutker, D.R., Chadwick, D.J., Thackray, G.D. and Dorsch, S.J., 2006. Analysis of LiDAR‐derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73, 131–148.
  • Guthrie, R.H. and Evans, S.G., 2007. Work, persistence, and formative events: the geomorphic impact of landslides. Geomorphology, 88, 266–275.
  • Guzzetti, F., 2005. Landslide hazard and risk assessment. PhD Diss. Mathematisch‐Naturwissenschaftlichen Fakultät., Rheinische Friedrich‐Wilhelms‐Universität Bonn, Germany. http://hss.ulb.uni‐bonn.de/2006/0817/0817.htm, 17‐Feb‐12.
  • Guzzetti, F. and Tonelli, G., 2004. Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards. Natural Hazards and Earth System Sciences, 4, 213–232.
  • Guzzetti, F., Carrara, A., Cardinali, M. and Reichenbach, P., 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi‐scale study, Central Italy. Geomorphology, 31, 181–216.
  • Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F. and Cardinali, M., 2006. Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazard and Earth System Science, 6, 115–131.
  • Haneberg, W.C., Cole, W.F. and Kasali, G., 2009. High‐resolution lidar‐based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA. Bulletin of Engineering Geology and the Environment, 68, 263–276.
  • Höfle, B., Mandlburger, G., Pfeifer, N., Rutzinger, M. and Bell, R., 2009. Potential of airborne LiDAR in geomorphology – a technological perspective. Geophysical Research Abstracts, 11, EGU2009‐4630.
  • Jaboyedoff, M. and Labiouse, V., 2011. Technical Note: Preliminary estimation of rockfall runout zones. Natural Hazards and Earth System Science, 11, 819–828.
  • Jaboyedoff, M., Pedrazzini, A., Horton, P., Loye, A. and Surace, I., 2008. Preliminary slope mass movements susceptibility mapping using LIDAR DEM. In: Proceedings of 61st Canadian Geotechnical Conference. 419–426.
  • Johnson, R.M., Warburton, J. and Mills, A.J., 2008. Hillslope‐channel sediment transfer in a slope failure event: Wet Swine Gill, Lake District, northern England. Earth Surface Processes and Landforms, 33, 394–413.
  • Jordan, P. and Slaymaker, O., 1991. Holocene sediment production in Lillooet River Basin, British Columbia: a sediment budget approach. Geographie Physique et Quaternaire, 45, 45–57.
  • Kappes, M., Malet, J.‐P., Remaître, A., Horton, P., Jaboyedoff, M. and Bell, R., 2011. Assessment of debris‐flow susceptibility at medium‐scale in the Barcelonette Basin, France. Natural Hazards and Earth System Science, 11, 627–641.
  • Keaton, J.R. and Degraff, J.V., 1996. Surface observations and geologic mapping. In: Turner, A.K. and Schuster, R.L. (eds), Landslides – Investigation and Mitigation. National Research Council, Washington, DC. 178–230.
  • Kellerer‐pirklbauer, A., Lieb, G.K., Avian, M. and Carrivick, J., 2012. Climate change and rock fall events in high mountain areas: numerous and extensive rock falls in 2007 at Mittlerer Burgstall, Central Austria. Geografiska Annaler: Series A, Physical Geography, 94, 59–78. doi:10.1111/j.1468‐0459.2011.00449.x
  • Korup, O., 2009. Linking landslides, hillslope erosion, and landscape evolution. Earth Surface Processes and Landforms, 34, 1315–1317.
  • Korup, O., Densmore, A.L. and Schlunegger, F., 2010. The role of landslides in mountain range evolution. Geomorphology, 120, 77–90.
  • Lang, A., Moya, J., Corominas, J., Schrott, L. and Dikau, R. 1999. Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology, 30, 33–52.
  • Mallet, C. and Bretar, F., 2009. Full‐waveform topographic lidar: state‐of‐the‐art. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 1–16.
  • Mccalpin, J., 1984. Preliminary age classification of landslides for inventory mapping. In: Proceedings of the 21st Engineering Geology and Soils Engineering Symposium, University of Idaho, Moscow. 99–120.
  • Meyenfeld, H., 2008. Modellierungen seismisch ausgelöster gravitativer Massenbewegungen für die Schwäbische Alb und den Raum Bonn und Erstellen von Gefahrenhinweiskarten. Ph.D. diss. Mathematisch‐Naturwissenschaftlichen Fakultät, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Germany. http://hss.ulb.uni‐bonn.de/2009/1692/1692.htm, 17‐Feb‐12.
  • Petschko, H., Glade, T., Bell, R., Schweigl, J. and Pomaroli, G., 2010. Landslide inventories for regional early warning systems. In: Malet, J.‐P., Glade, T. and Casagli, N. (eds), Proceedings of the International Conference ‘Mountain Risks: Bringing Science to Society’, Firenze, 24–26 November 2010. 277–282.
  • Pomaroli, G., Bell, R., Glade, T., Heiss, G., Leopold, P., Petschko, H., Proske, H. and Schweigl, J., 2011. Darstellung der Gefährdung durch gravitative Massenbewegungen im Bundesland Niederösterreich als Grundlage der Raumplanung. Wildbach und Lawinenverbau, 166, 198–212.
  • Röhrs, M. and Dix, A., 2010. Rekonstruktion historischer Ereignisse. In: Bell, R., Mayer, J., Pohl, J., Greiving, S. and Glade, T. (eds), Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS). Monitoring, Modellierung, Implementierung. Klartext Verlag, Essen. 46–61, 261–264.
  • Rothe, P., 2005. Die Geologie Deutschlands. 48 Landschaften im Portrait. Wissenschaftliche Buchgesellschaft, Darmstadt.
  • Schädel, K. and Stober, I., 1988. Rezente Großrutschungen an der Schwäbischen Alb. Jahreshefte des Geologischen Landesamtes Baden-Württemberg, 30, 431–439.
  • Scheidl, C. and Rickenmann, D., 2010. Empirical prediction of debris‐flow mobility and deposition on fans. Earth Surface Processes and Landforms, 35, 157–173.
  • Schmitt, G., 2005. Die Alemannen im Zollernalbkreis. PhD diss. Fachbereich 07, Geschichts‐ und Kulturwissenschaften, Universität Mainz, Germany.
  • Schulz, W.H., 2007. Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Engineering Geology, 89, 67–87.
  • Schuster, R.L. 1996. Socioeconomic significance of landslides. In: Turner, A.K. and Schuster, R.L. (eds), Landslides – Investigation and Mitigation. National Research Council, Washington, DC. 12–35.
  • Schweigl, J. and Hervás, J., 2009. Landslide Mapping in Austria, JRC Scientific and Technical Report EUR 23785 EN, Office for Official Publications of the European Communities, Luxembourg. http://eusoils.jrc.ec.europa.eu/ESDB_Archive/eusoils_docs/other/EUR23785EN.pdf, 01‐Mar‐11.
  • Schwenk, H., 1992. Massenbewegungen in Niederösterreich 1953–1990. Jahrbuch der Geologischen Bundesanstalt. Geologische Bundesanstalt, Vienna. 597–660.
  • Stolz, A. and Huggel, C., 2008. Debris flows in the Swiss National Park: the influence of different flow models and varying DEM grid size on modeling results. Landslides, 5, 311–319.
  • Terhorst, B., 1997. Formenschatz, Alter und Ursachenkomplexe von Massenverlagerungen an der schwäbischen Juraschichtstufe unter besonderer Berücksichtigung von Boden‐ und Deckschichtenentwicklung, Tübinger Geowissenschaftliche Arbeiten, Reihe D, 2, Tübingen.
  • Terhorst, B., 2001. Mass movements of various ages on the Swabian Jurassic escarpment: geomorphologic processes and their causes. Zeitschrift für Geomorphologie, Supplement Volume, 125, 105–127.
  • Thiebes, B., Bell, R. and Glade, T. 2010. Physikalisch basiertes Frühwarnmodell. In: Bell, R., Mayer, J., Pohl, J., Greiving, S. and Glade, T. (eds), Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS). Monitoring, Modellierung, Implementierung. Klartext Verlag, Essen. 130–140, 265–266.
  • Van den eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyersons, J., Van beek, L.P.H. and Vandekerckhove, L., 2007. Use of LIDAR‐derived images for mapping old landslides under forest. Earth Surface Processes and Landforms, 32, 754–769.
  • Varnes, D.J., 1984. Landslides Hazard Zonation: A Review of Principles and Practice. UNESCO, Paris.
  • Wagenplast, P., 2005. Ingenieur geologische Gefahren in Baden‐Württemberg, Landesamt für Geologie, Rohstoffe und Bergbau Baden‐Württemberg, Freiburg i. Br.
  • Wagner, W., Hollaus, M., Briese, C. and Ducic, V., 2008. 3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners. International Journal of Remote Sensing, 29, 1433–1452.
  • Wessely, G., Draxler, I., Gangl, G., Gottschling, P., Heinrich, M., Hofmann, T., Lenhardt, W., Matura, A., Pavuza, R., Peresson, H. and Sauer, R., 2006. Geologie der österreichischen Bundesländer, Niederösterreich. Geologische Bundesanstalt, Vienna.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.