1,076
Views
331
CrossRef citations to date
0
Altmetric
Original Articles

How may tropical cyclones change in a warmer climate?

, , , , , & show all
Pages 539-561 | Received 22 Jan 2007, Accepted 13 Apr 2007, Published online: 15 Dec 2016

References

  • Bengtsson, L., Botzet, M. and Esch, M., 1995. Hurricane-type vortices in a general circulation model. Tellus 47A, 175–196.
  • Bengtsson, L., Botzet, M. and Esch, M. 1996. Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus 48A, 57–73.
  • Bengtsson, L., Hodges, K. I. and Roeckner, E. 2006. Storm tracks and climate change. J. Clim. 19, 3518–3543.
  • Bengtsson, L., Hodges, K. I. and Esch, M. 2007. Hurricane type vortices in a high-resolution global model: comparison with observations and Re-Analyses. Tellus 59A, in press.
  • Bister, M. and Emanuel, K. A. 1998. Dissipative heating and hurricane intensity. Meteor. Atm. Phys. 52, 233–240.
  • Broccoli, A. J. and Manabe, S. 1990. Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett. 17, 1917–1920.
  • Chan J. C. L. 2006. Comments on “Changes in tropical cyclone number, duration, and intensity in a warming environment”. Science 311, 1713b.
  • Chauvin, E, Royer, J. -E and DO-clue, M. 2006. Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Clim. Dyn. 27, 377-399.
  • DeMaria, M., Mainelli, M., Shay, L. K., Knaff, J. A. and Kaplan, J. 2005. Further improvements to the statistical hurricane intensity prediction scheme (SHIPS). Wea. Forecast. 20, 531–543.
  • Emanuel, K. A. 1987. The dependence of hurricane intensity on climate. Nature 326,483–485.
  • Emanuel, K. A. 1988. The maximum intensity of hurricanes. J. Atmos. Sc i. 45, 1143–1155.
  • Emanuel, K. A. 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688.
  • Emanuel, K., DesAutels, C., Holloway, C. and Korty, R. 2004. Environmental control of tropical intensity. J. Atmos. Sc i. 61, 843–858.
  • Franks, W. M. 1977. The structure and energetics of the tropical cyclone I. Storm structure. Mon. Wea. Re v. 105, 1119–1135.
  • Goldstein, H. 1980. Finite rotations. In: Classical Mechanics, 2nd edn., Addison-Wesley, Reading, MA, pp. 164-166.
  • Gray, W. M. 1979. Hurricanes: their formation, structure and likely role in the tropical circulation. In: Meteorology Over Tropical Oceans (ed. D. B. Shaw), Roy. Meteor. Soc., James Glaisher House, Grenville Place, Bracknell, Berkshire, RG12 1BX, pp.155-218.
  • Held, I. M. and Soden, B. J. 2006. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699.
  • Holland G. J. 1997. The maximum potential intensity of tropical cyclones. J. Atmos. Sc i. 54, 2519–2541.
  • Holton, J. R. 1992. An Introduction to Dynamical Meteorology. Academic Press, San Diego, 511 pp.
  • IPCC IPCC200. Climate Change 2001. The scientific basis. In: Contribution of Working Group I to the Third Assessment Report of the Intergovemmental Panel of Climate Change (eds J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. vander Linden, X. Dai, K. Maskell and C. A. Johnson), Cambridge University Press, pp. 881.
  • Jablonowski, C., Herzog, M., Penner, J. E., Oehmke, R. C., Stout, Q. E and co-authors. 2004. Adaptive grids for weather and climate models, ECMWF Seminar Proceedings on Recent Developments in Numerical Methods for Atmosphere and Ocean Modeling, pp. 233-250, Reading, UK.
  • Jungclaus, H., Keenlyside, N., Botzet, M., Haak, H., Luo, J.-J. and co-authors. 2006. Ocean circulation and tropical variability in the coupled model ECHAM5/MPIOM. J. Clim. 19, 3952-3972.
  • Kepert, J. D. 2006a. Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sc i. 63, 2169–2193.
  • Kepert, J. D. 2006b. Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sc i. 63, 2169–2193.
  • Knutson, T. R. and Manabe, S. 1995. Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J. Clim. 8,2181–2199.
  • Knutson, T. R., Tuleya, R. E., and Kurihara, Y. 1998. Simulated increase of hurricane intensities in a CO2-warmed climate. Science 279, 1018–1020.
  • Knutson, T. R. and Tuleya, R. E. 1999. Increased hurricane intensities with CO2-induced global warming as simulated using the GFDL hurricane prediction system. Clim. Dyn. 15, 503–519.
  • Knutson, T. K., Tuleya, R. E., Shen, W. and Ginnis, I. 2001. Impact of CO2-induced warming on hurricane intensities as simulated in a hurricane model with ocean coupling. J. Clim. 14, 2458–2468.
  • Knutson, T. K. and Tuleya, R. E. 2004. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J. Clim. 17, 3477–3495.
  • Klotzbach, P. J. 2006. Trends in global tropical cyclone activity over the past twenty years (1986-2005). Geophys. Res. Lett. 33, L10805, doi: 10.1029/2006GL025881.
  • Krishnamurti, T. N., Pattnaik, S., Stefanova, L., Vijaya Kumar, T. S. V. and co-authors. 2005. The hurricane intensity issue. Mon. Weather Rev. 133, 1886–1912.
  • Landsea, C. W., Harper, B. A., Hoarau, K. and Knaff, J. A. 2006. Can we detect trends in extreme tropical cyclones? Science 313, 452–454.
  • Lin, J.-L., Kiladis, G. N., Mapes, B. E., Weickmann, K. M., Sperber, K. R. and co-authors. 2006. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Clim. 19, 2665-2690.
  • Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J. and co-authors. 2000. IPCC Special Report on Emissions Scenarios. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 599 pp.
  • Oldenborgh, G. J. van Philip, S. Y. and Collins, M. 2005. El Nifio in a changing climate: a multi-model study. Ocean Sc i. 1, 81–95.
  • Oouchi, K., Yoshimura, J., Yoshimura, H., Mizuta, R., Kusunoki, S. and co-authors. 2006. Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: frequency and wind intensity analysis. J. MeteoroL Soc. Jpn. 84, 259-276.
  • Palmen, E. H. 1948. On the formation and structure of tropical cyclones. Geophysica 3, 26–38.
  • Pham, M., Boucher, O. and Hauglustaine, D. 2005. Changes in atmospheric sulfur burdens and concentrations and resulting radiative forcings under IPCC SRES emission scenarios for 1990-2100. J. Geophys. Res. 110, D06112, doi: 10.1029/2004JDO05125.
  • Rayner, N. A., Brohan, P., Parker, D. E., Folland, C. K., Kennedy, J. J. and co-authors. 2006. Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 data set. J. Clim. 19, 446-469.
  • Roeckner, E., Brasseur, G. P., Giorgetta, M., Jacob, D., Jungclaus, J. and co-authors. 2006. Climate projections for the 21st century. Max Planck Institute for Meteorology, Internal Report, 28 pp. [available from Max Planck Institute for Meteorology, Bundesstr. 53,20146, Hamburg, Germany].
  • Royer, J.-E, Chauvin, E, Timbal, B., Araspin, P. and Grimal, D. 1998. A GCM study of impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Clim. Dyn. 38, 307–343.
  • Ryan, B. E, Watterson, I. G. and Evans, J. L. 1992. Tropical cyclone frequencies inferred from Gray’s yearly genesis parameter: Validation of GCM tropical climate. Geophys. Res. Lett. 19, 1831–1834.
  • Shen, B.-W., Atlas, R., Reale, O., Lin, S. -J., Chem, J.-D. and co-authors. 2006. Hurricane forecasts with a global mesoscale-resolving model: preliminary results with Hurricane Katrina (2005). Geophys. Res. Lett. 33, L13813, doi: 10.1029/2006GL026143.
  • Sriver, R. L. and Huber, M. 2006. Low frequency variability in globally integrated tropical cyclone power dissipation. Geophys. Res. Lett. 33, L11705 doi: 10.1029/2006GL026167.
  • Sugi, M., Noda, A. and Sato, N. 2002. Influence of the global warming on tropical cyclone climatology: an experiment with the JMA global model. J. Meteorol. Soc. Jpn. 80, 249–272.
  • Tang, B. H. and Neelin, J. D. 2004. ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett. 31, L24204, doi: 10.1029/2004GL021072.
  • Thorncroft, C. and Hodges, K. 2001. African easterly wave variability and its relationship to atlantic tropical cyclone activity. J. Clim. 14, 1166–1179.
  • Walsh, K., Fiorino, M., Landsea, C. and McIrmes, K. 2007. Objectively-determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Clim., in press
  • Watterson, I. G., Evans, J. L. and Ryan, B. E 1995. Seasonal and interannual variability of tropical cyclogenesis: diagnostics from large-scale fields. J. Clim. 8, 3042–3066.
  • Webster, P. J., Holland, G. J., Curry, J. A. and Chang, H. R. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846.
  • WGNE WGNE199. AMIP II guidelines. Atmospheric Model Intercomparison Project Newsletter, No. 8, AMP Project Office, Livermore, CA, 24 pp. [Available from AMIP Project Office, PCMDI, L-264, LLNL, P.O. Box 808, Livermore, CA 945501.
  • Wu, G. and Lau, N.-C. 1992. A GCM simulation of the relationship between tropicalstorm formation and ENSO. Mon. Wea. Re v. 120, 958–977.
  • Yoshimura, J., Masato, S. and Noda, A. 2006. Influence of greenhouse warming on tropical cyclone frequency. J. Meteorol. Soc. Jpn. 84 (2), 405–428.