187
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The simulated sea ice thermal microwave emission at window and sounding frequencies

Pages 333-344 | Received 01 Sep 2009, Accepted 13 Jan 2010, Published online: 15 Dec 2016

References

  • Baunach, T., Fierz, C., Satyawali, P. K. and Schneebeli, M. 2001. A model for kinetic grain growth. Ann. GlacioL 32, 1–6.
  • Brun, E., Martin, E., Simon, V., Gendre, C. and Coleou, C. 1989. An energy and mass model of snow cover suitable for operational avalanche forecasting. J. GlacioL 35 (121), 333–342.
  • Brun, E., David, P., Sudul, M. and Brunot, G. 1992. A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol. 38 (128), 13–22.
  • Cavalieri, D. J. 1994. A microwave technique for mapping thin ice. J. Geophys. Res. 99(C6), 12561–12572.
  • Comiso, J. C., Cavalieri, D. J., Parkinson, C. L. and Gloersen, P. 1997. Passive microwave algorithms for sea ice concentration: a comparison of two techniques. Remote Sens. Environ. 60, 357–384.
  • Derber, J. C. and Wu, W.-S. 1998. The use of TOVS cloud cleared radiances in the NCEP SSI analysis System. Mon. Wea. Rev. 126, 2287–2299.
  • English, S. J. 1999. Estimation of temperature and humidity profile information from microwave radiances over different surface types. J. AppL MeteoroL 38, 1526–1527.
  • Eppler, D. T., Farmer, L. D., Lohanick, A. W., Anderson, M. R., Cavalieri, D. J. and co-authors. 1992. Passive microwave signatures of sea ice. In: Microwave Remote Sensing of Sea Ice, Geophysical Monograph 68 (ed. F. D. Carsey). American Geophysical Union, Washington, DC, 47–71.
  • Haggerty, J. A. and Curry, J. A. 2001. Variability of sea ice emissivity estimated from airborne passive microwave measurements during FIRE SHEBA. J. Geophys. Res. 106(D14), 15265–15277.
  • Hallikainen, M. and Winebrenner, D. P. 1992. The physical basis for sea ice remote sensing. In: Microwave Remote Sensing of Sea Ice, Geophysical Monograph 68 (ed. F. D. Carsey). American Geophysical Union, Washington, DC, 29–46.
  • Harlow, R. C. 2007. Airborne retrievals of snow microwave emissivity at AMSU frequencies using ARTS/SCEM-UA. J. AppL MeteoroL ClimatoL 46, 23–35.
  • Hewison, T. J. and English, S. J. 1999. Airborne retrievals of snow and ice surface emissivity at millimeter wavelengths. IEEE Trans. Geosci. Remote Sens.37(4), 1871–1879.
  • Heygster, G., Melsheimer, C., Mathew, N., Toudal, L., Saldo, R., and co-authors. 2009. POLAR PROGRAM: Integrated Observation and Modeling of the arctic Sea Ice and Atmosphere. Bull. Amer. Meteor Soc. 90, 293–297.
  • Hwang, B. J., Ehn, J. K., Barber, D. G., Galley, R. and Grenfell, T. C. 2007. Investigations of newly formed sea ice in the Cape Bathurst polynya: 2. Microwave emission. J. Geophys. Res. 112, C05003, 10.1029/2006JC003703.
  • Jordan, R. 1991. A one-dimensional temperature model for a snow cover. CRREL SP 91–16.
  • Jordan, R., Andreas, E. and Malcshtas, A. 1999. Heat budget of snow covered sea ice at North Pole 4. J. Geophys. Res. 104(C4), 7785–7806.
  • Kunkee, D. B., Poe, G. A., Boucher, D. J., Swadley, S. D., Hong, Y., and co-authors. 2008. Design and evaluation of the first special sensor microwave imager/sounder. IEEE Trans. Geosci. Remote Sens. 46 (4), 863–883.
  • Marbouty, D. 1980. An experimental study of temperature gradient metamorphosism. J. GlacioL 26 (94), 303–312.
  • Mätzler, C. 1998. Improved Born approximation for scattering of radiation in a granular medium. J. AppL Phys. 83 (11), 6111–6117.
  • Mätzler, C. 2002. Relation between grain-size and correlation length of snow. J. GlacioL 48 (162), 461–466.
  • Mätzler, C. and Wiesmann, A. 1999. Extension of the Microwave Emission Model of Layered Snowpacics to coarse-grained snow. Remote Sens. Environ. 70, 317–325.
  • Mätzler, C., Rosenkranz, P. W., Battaglia, A. and Wigneron, J. P. eds. 2006. Thermal Microwave Radiation-Applications for Remote Sensing. TEE Electromagnetic Waves Series, London, UK.
  • Maykut, G. A. 1986. The surface heat and mass balance. In: The Geo-physics of Sea Ice (ed. N. Untersteiner). NATO ASI Series, Plenum Press, New York and London, 395–464.
  • Maykut, G. A. and Untersteiner, N. 1971. Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res. 76, 1550–1575.
  • Nakawo, M. and Sinha, N. K. 1981. Growth rate and salinity profile of first-year sea ice in the high Arctic. J. GlacioL 27 (96), 315–330.
  • Thyness, V., Pedersen, L. T., Schyberg, H. and Tveter, F. 2005. Assimilating AMSUA over sea ice in HIRLAM 3D-Var, ITSC XIV Proceedings, Beijing, China 25-31 May2005.
  • Tonboe, R. T. 2005. A mass and thermodynamic model for sea ice. Danish Meteorological Institute Scientific Report 05-10, Copenhagen.
  • Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N. N., and co-authors. 1999. Snow depth on Arctic sea ice. J. Clim. 12, 1814–1829.
  • Wiesmann, A. and Mätzler, C. 1999. Microwave emission model of layered snowpacics. Remote Sens. Environ. 70, 307–316.
  • Wiesmann, A., Fierz, C. and Mätzler, C. 2000. Simulation of microwave emission from physically modelled snowpacks. Ann. GlacioL 31, 397–404.
  • Wiesmann, A., Mätzler, C. and Weise, T. 1998. Radiometric and structural measurements of snow samples. Radio Sci. 33 (2), 273–289.