300
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Role of convective parameterization in simulations of a convection band at grey-zone resolutions

&
Pages 617-632 | Received 07 Dec 2009, Accepted 25 May 2010, Published online: 15 Dec 2016

References

  • Adlerman, E. J. and Droegemeier, K. K. 2002. The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters. Mon. Wea. Rev. 130, 2671–2691.
  • Aralcawa, A. 2004. The cumulus parameterization problem: past, present, and future. J. Climate 17, 2493–2525.
  • Aralcawa, A. and Chen, J. M. 1987. Closure assumptions in the cumulus parameterization problem. In: Short and Medium Range Numerical Weather Prediction (ed. T. Matsuno). Jpn Meteor Soc., 107–131.
  • Bryan, G. H., Wyngaard, J. C. and Fritsch, J. M. 2003. Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev. 131, 2394–2416.
  • Craig, G. C. and Dörnbrack, A. 2008. Entrainment in cumulus clouds: what resolution is cloud-resolving?. J. Atmos. Sci. 65, 3978–3988.
  • Deng, A. and Stauffer, D. R. 2006. On improving 4-km mesoscale model simulations. J. Appl. Meteor. Climatol. 45, 361–381.
  • Dudhia, J. 1993. A nonhydrostatic version of the Penn State-NCAR Mesoscale Model: validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev. 121, 1493–1513.
  • Fritsch, J. M. and Chappell, C. E 1980. Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci. 37, 1722–1733.
  • Gerard, L. 2007. An integrated package for subgrid convection, clouds and precipitation compatible with mesogamma scales. Quart. J. Roy. Meteor Soc. 133, 711–730.
  • Gerard, L. and Geleyn, J.-F. 2005. Evolution of a subgrid deep convection parameterization in a limited area model with increasing resolution. Quart. J. Roy. Meteor. Soc. 131, 2293–2312.
  • Grell, G., Dudhia, J. and Stauffer, D. 1994. A description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Note NCAR/TN-398±STR,138 pp.
  • Hammarstrand, U. 1998. Questions involving the use of traditional convection parameterization in NVVP models with higher resolution. Tellus 50A, 265–282.
  • Kain, J. S. 2004. The Kain-Fritsch convective parameterization: an update. J. Appl. Meteor 43, 170–181.
  • Kain, J. S. and Fritsch, J. M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 47, 2784–2802.
  • Kain, J. S. and Fritsch, J. M. 1993. Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In: The Representation of Cumulus Convection in Numerical Models, Meteor Monogr, No. 46, Amer. Meteor Soc., 165–170.
  • Kain, J. S., Weiss, S. J., Bright, D. R., Levit, J. J., Carbin, G. W. and co-authors. 2008. Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting 23, 931–952.
  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D. and co-authors. 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteor Soc. 77, 437–471.
  • Kotroni, V. and Lagouvardos, K. 2004. Evaluation of MM5 high-resolution real-time forecasts over the urban area of Athens, Greece. J. Appl. Meteor 43, 1666–1678.
  • Kuell, V., Gassmann, A. and Bott, A. 2007. Towards a new hybrid cumulus parameterization schemes for use in non-hydrostatic weather prediction models. Quart. J. R. Meteor. Soc. 133,479–490.
  • Lau, K. M., Ding, Y., Wang, J. T., Johnson, R., Keenan, T. and co-authors. 2000. A report of the field operations and early results of the South China Sea Monsoon Experiment (SCSMEX). Bull. Am. Meteor. Soc. 81, 1261–1270.
  • Lean, H. W., Clark, P. A., Dixon, M., Roberts, N. M., Fitch, A. and co-authors. 2008. Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev. 136, 3408–3424.
  • Liu, C., Liu, Y. and Xu, H. 2006. A physics-based diffusion scheme for numerical models. Geophys. Res. Lett. 33, 10.1029/2006GL025781.
  • Ma, L.-M. and Tan, Z.-M. 2009. Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res. 92, 190–211.
  • Molinari, J. M. and Dudek, M. 1992. Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon. Wea. Rev. 120, 326–344.
  • Niemelä, S. and Fortelius, C. 2005. Applicability of large-scale convection and condensation parameterization to meso-y -scale HIRLAM: a case study of a convective event. Mon. Wea. Rev. 133, 2422–2435.
  • Noda, A. and Niino, H. 2003. Critical grid size for simulating convective storms: a case study of the Del City supercell storm. Geophys. Res. Lett. 30, 10.1029/2003GL017498.
  • Petch, J. C., Brown, A. R. and Gray, M. E. B. 2002. The impact of horizontal resolution on the simulations of convective development overland. Quart. J. R. Meteor Soc. 128, 2031–2044.
  • Reisner, J., Rasmussen, R. J. and Bruintjes, R. T. 1998. Explicit fore-casting of supercooled liquid water in winter storms using the MM5 Mesoscale Model. Quart. J. R. Meteor. Soc. 124B, 1071–1107.
  • Roberts, N. M. and Lean, H. W. 2008. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev. 136, 78–97.
  • Saito, K., Ishida, J.-I., Aranami, K., Hara, T., Segawa, T. and co-authors. 2007. Nonhydrostatic atmospheric models and operational development at .IMA. J. Meteor Soc. Jpn. 85B, 271–304.
  • Schwartz, C. S., Kain, J. S., Weiss, S. J., Xue, M., Bright, D. R. and co-authors. 2009. Next-day convection-allowing WRF model guidance: a second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev. 137, 3351–3372.
  • Steppeler, J., Hess, R., Schattler, U. and Bonaventura, L. 2003. Review of numerical methods for nonhydrostatic weather prediction models. Meteorol. Atmos. Phys. 82, 287–301.
  • Sun, J. and Lee, T. Y. 2002. A numerical study of an intensive quasi-stationary convection band over the Korean Peninsula. J. Meteor Soc. Jpn. 80 (5), 1221–1245.
  • Thompson, G., Rasmussen, R. M. and Manning, K. 2004. Explicit fore-casts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev. 132, 519–542.
  • Weisman, M. L., Slcamarock, W. C. and Klemp, J. B. 1997. The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev. 125, 527–548.
  • Weisman, M. L., Davis, C., Wang, W., Wanning, K. W. and Klemp, J. B. 2008. Experiences with 0-36-h experiments convective forecasts with the WRF-ARW model. Wea. Forecasting 23, 407–437.
  • Zhang, D.-L. and Anthes, R. A. 1982. A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor 21, 1594–1609.