383
Views
109
CrossRef citations to date
0
Altmetric
Original Articles

Variational data assimilation for atmospheric CO2

, &
Pages 359-365 | Received 13 Jan 2006, Accepted 26 Jun 2006, Published online: 18 Jan 2017

References

  • Baker, D. E 2001. Sources and Sinks of Atmospheric CO2 Esti-mated from Batch Least Squares Inversions of CO2 Concentration Measurements, PhD dissertation, 414 pp., Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey, January.
  • Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P. and co-authors.2006. TransCom3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988-2003. Global Biogeochem. Cycles. 20, GB1002, 10.1029/2004GB002439.
  • Bennett, A. F. 2002. Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press, Cambridge, 234 pp.
  • Bousquet, R, Peylin, P., Ciais, P., Le Quere, C., Friedlingstein, P. and co-authors. 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science. 290, 1342–1346.
  • Braswell, B. H., Sacks, W. J., Linder, E. and Schimel, D. S. 2005. Es-timating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange ob-servations. Global Change Biol. 11, 335–355, 10.1111/j.1365-2486.2005.00897.x.
  • Bruhwiler, L. M. P., Michalak, A. M., Peters, W., Baker, D. F. and Tans, P. 2005. An improved Kalman Smoother for atmospheric inversions. Atmos. Chem. Phys. 5, 2691-2702, SRef-ID: 1680-7324/acp/2005-5-2691.
  • Bryson, A. E. and Ho, Y.-C. 1975. Applied Optimal Control. Hemisphere Publ. Co., New York, 481 pp.
  • Buchwitz, M., de Beek, R., Burrows, J. P., Bovensmann, H., Warneke, T. and co-authors.2005. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models. Atmos. Chem. Phys. 5, 941–962.
  • Chedin, A., Serrar, S., Scott, N. A., Crevoisier, C. and Armante, R. 2003. First global measurement of midtropospheric CO2 from NOAA polar satellites: tropical zone. J. Geophys. Res., Atmos. 108(D18), 4581 10.1029/2003JD003439.
  • Crevoisier, C., Heilliette, S., Chedin, A., Serrar, S., Armante, R. and Scott, N. A. 2004. Midtropospheric CO2 concentration retrieval from AIRS observations in the tropics. Geophys. Res. Lett. 31(17), L17106, 10.1029/2004GL020141.
  • Crisp, D., Atlas, R. M., Breon, F.-M., Brown, L. R., Burrows, J. P. and co-authors.2004. The Orbiting Carbon Observatory (OCO) Mission. Adv. Space Res. 34, 700–709.
  • Deeter, M. N., Emmons, L. K., Francis, G. L., Edwards, D. R, Gille, J. C. and co-authors.2003. Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J. Geophys. Res. 108 (D14), 4399, 10.1029/2002JD003186.
  • Dilling, L., Doney, S. C., Edmonds, J., Gurney, K. R., Harriss, R. and co-authors.2003. The role of carbon cycle observations and knowledge in carbon management. Ann. Rev. Environ. Resour 28, 10.1146/annurev.energy.28.011503.163443, 521-558.
  • Doney, S. C., Lindsay, K., Caldeira, K., Campin, J.-M., Drange, H. and co-authors.2004. Evaluating global ocean carbon models: the impor-tance of realistic physics. Global Biogeochem. Cycles. 18, GB3017, 10.1029/2003GB002150.
  • Enting, I. 2002. Inverse Problems in Atmospheric Constituent Transport, Cambridge Univ. Press, Cambridge, UK, 392 pp.
  • Errico, R. M. 1997. What is an adjoint model? Bull. Am. MeteroL Soc. 78, 2577–2591.
  • Frankenberg, C., Meirinlc, J. F., van Weele, M., Platt, U. and Wagner, T. 2005. Assessing methane emissions from global space-borne obser-vations. Science. 308 (5724), 1010–1014.
  • Geels, C., Doney, S. C., Dargaville, R., Brandt, J. and Christensen, J. H. 2004. Investigating the sources of synoptic variability in atmospheric CO2 measurements over the Northern Hemisphere continents: a re-gional model study. Tellus. 56B, 35–50.
  • GLOBALVIEW-CO2 2004. Cooperative Atmospheric Data Integra-tion Project—Carbon Dioxide. CD-ROM, NOAA CMDL, Boul-der, Colorado [Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW].
  • Houweling, S., Breon, F.-M., Aben, I., Rödenbeck, C., Heimann, M. and co-authors.2004. Inverse modelling of CO2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time. Atmos. Chem. Phys. 4, 523–538.
  • Kaminski, T., Heimann, M. and Giering, R. 1999a. A coarse grid three-dimensional global inverse model of the atmospheric transport, 1: adjoint model and Jacobian matrix. J. Geophys. Res. 104, 18535-18 553.
  • Kaminski, T., Heimann, M. and Giering, R. 1999b. A coarse grid three-dimensional global inverse model of the atmospheric transport, 2: inversion of the transport of CO2 in the 1980s.J. Geophys. Res. 104, 18555–18581.
  • Kama, S. R., Erickson, D. J., Pawson, S. and Zhu, Z. 2004. Global CO2 transport simulations using meteorological data from the NASA data assimilation system. J. Geophys. Res.-Atmos. 109(D18), D18312, 10.1029/2004JD004554.
  • Peters W., Miller, J. B., Whitaker, J., Denning, A. S., Hirsch, A. and co-authors.2005. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res. 110 (D24), Art. No. D24304.
  • Peylin, P., Rayner, P. J., Bousquet, P., Carouge, C., Hourdin, F. and co-authors.2005. Daily CO2 flux estimates over Europe from con-tinuous atmospheric measurements. 1: inverse methodology. Atmos. Chem. Phys. Discuss. 5, 1647-1678, SRef-ID: 1680-7375/acpd/2005-5-1647.
  • Randerson, J. T., Thompson, M. V, Conway, T. J., Fung, I. Y. and Field, C. B. 1997. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochem. Cycles. 11, 535–560.
  • Rayner, P. J. and O'Brien, D. 2001. The utility of remotely sensed CO2 concentration data in surface source inversions. Geophys. Res. Lett. 28, 175–178.
  • Rayner, P. J., Scholze, M., Knorr, W., Kaminski, T., Giering, R. and co-authors.2005. Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS), Global Biogeochem. Cycles. 19, GB2026, 10.1029/2004GB002254.
  • Rödenbeck, C., Houweling, S., Gloor, M. and Heimann, M. 2003. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3,1919–1964.
  • Rödenbeck, C. 2005. Estimating CO2 sources and sinks from atmo-spheric mixing ratio measurements using a global inversion of atmo-spheric transport. Max-Planck-Institut fiir Biogeochemie: Technical Paper 6.
  • Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A. and co-authors2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol. 9 (2), 161–185.
  • Stoer, J. and Bulirsch, R. 1980. Introduction to Numerical Analysis, Springer-Verlag, New York, 609 pp.
  • Takahashi, T., Wanninlchof, R. H., Feely, R. A., Weiss, R. F., Chipman, D. W. and co-authors.1999. Net sea-air CO2 flux over the global oceans: an improved estimate based on the sea-air pCO2 difference, Proceed-ings of the 2nd International Symposium: CO2 in the Oceans, the 12th Global Environmental Tsukuba, 18-22 January 1999, Tsukuba Center of Institutes, (ed.Y. Nojiri). Natl. Inst. for Environ. Studies, Environ. Agency of Japan.