188
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

The surface energy, water, carbon flux and their intercorrelated seasonality in a global climate-vegetation coupled model

&
Pages 425-438 | Received 29 Apr 2006, Accepted 24 Jan 2007, Published online: 18 Jan 2017

References

  • Barford, C. C., Wofsy, S. C., Goulden, M. L., Munger, J. W., Pyle, E. H. and co-authors 2001. Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294, 1688–1691.
  • Barrett, D. J. 2002. Steady state turnover time of carbon in the Aus-tralian terrestrial biosphere. Global Biogeochem. Cycles 16, 1108, 10.1029/2002GB001860.
  • Cao, M. K., Prince, S. D., Tao, B., Small, J. and Li, K. R. 2005. Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO2. Tellus 57B, 210–217.
  • Chen, F. and Dudhia, J. 2001. Coupling an advanced land surface—hydrology model with the Penn State—NCAR MM5 modeling system Part I: model implementation and sensitivity. Mon. Weather Rev. 129, 569–585.
  • Chen, T. H., Henderson-sellers, A., Milly, P. C. D. and co-authors. 1997. Cabauw experimental results from the Project for Intercom-parison of Land-Surface Parametrization Schemes. J. Clim. 10, 1194–1215.
  • Collatz, G., Ribas-Carbo, M. and Ball, J. A. 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Australian J. Plant PhysioL 19, 519–538.
  • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187.
  • Coquard, J., Buffy, P. B., Taylor, K. E. and Iorio, J. P. 2004. Present and future surface climate in the western USA as simulated by 15 global climate models. Clim. Dyn. 23, 455–472.
  • Cramer, W., Kicklighter, D. W., Bondeau, A., Moore, B., Churkina, G. and co-authors and the participants of the Potsdam NPP Model Intercomparison. 1999.
  • Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biol. 5(Suppl. 1), 1–15.
  • Dan, L., Ji, J. J. and Li, Y. P. 2005. Climatic and biological simulations in a two-way coupled atmosphere-biosphere model (CABM). Glob. Planet. Change 47, 153–169.
  • Elsner, J. B. and Tsonis, A. L. A. 1994. Empirically derived climate predictability over the extratropical northern hemisphere. Nonlinear Process. Geophys. 1, 41–44.
  • Farquhar, G. D., Caemmerer, S. von and Berry, J. A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta 149, 78–90.
  • Farquhar, G. D. and Sharley, T. D. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant PhysioL 33, 317–345.
  • Field, C. B. 1983. Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program. Oecologia 56, 341–347.
  • Frankignoul, C., Kestenare, E., Botzet, M., Carril, A. E, Drange, H. and co-authors. 2004. An intercomparison between the surface heat flux feedback in five coupled models, COADS and the NCEP reanalysis. Clim. Dyn. 22, 373–388.
  • Friedlingstein, R, Bopp, L., Ciais, P., Dufresne, J., Fairhead, L. and co-authors. 2001. Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 28, 1543–1546.
  • Gao, G. D. and Lu, Y. R. 1981. Climatological atlas of China. China Agriculture Publishing House, 1-183 (in Chinese).
  • Govindasamy, B., Thompson, S., Mirin, A., Wickett, M., Caldeira, K. and co-authors. 2005. Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model. Tellus 57B, 153–163.
  • Hagemann, S., Botzet, M., Dumenil, L. and Machenhauer, B. 1999. Derivation of global GCM boundary conditions from I KM land use satellite data. Max Planck Institute for Meteorology (MPI) Report No. 289,1–34.
  • Hagemann, S. 2002. An improved land surface parameter dataset for global and regional climate models. Max Planck Institute for Meteo-rology (MPI) Report No.336,1–21.
  • Hunt, E. R., Piper, S. C., Nemani, R., Keeling, C. D., Otto, R. D. and co-authors. 1996. Global net carbon exchange and intra-annual at-mospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model. Global Biogeochem. Cycles 10, 431–456.
  • Imhoff, M. L., Bounoua, L., Ricketts, T., Loucks, C., Harriss, R. and co-authors. 2004. Global patterns in human consumption of net primary production. Nature 429, 870–873.
  • Jacobs, C. M. J., van den Hurk, B. J. J. M. and de Bruin, H. A. R. 1996. Stomatal behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions. Agric. Forest MeteoroL 80, 111–134.
  • Ji, J. J. 1995. A climate-vegetation interaction model: simulating physical and biological processes at the surface. J. Biogeogr 22,445–451.
  • Ji, J. J., and Hu, Y. C. 1989. A simple land surface process model for use in climate studies. Acta MeteoroL Sinica 3, 344–353.
  • Ji, J. J. and Yu, L. 1999. A simulation study of coupled feedback mech-anism between physical and biogeochemical processes at the surface. Chinese J Atmos. Sci. 23,439-448 (in Chinese).
  • Ji, J. J., Huang, M. and Liu, Q. 2005. Modeling studies of response mechanism of steppe productivity to climate change in middle latitude semiarid regions in China. Acta MeteoroL Sinica 63, 257-266 (in Chinese).
  • Koster, R. D., Dirmeyer, P. A., Hahmann, A. N., Ijpelaar, R., Tyahla, L. and co-authors. 2002. Comparing the degree of land—atmosphere interaction in four atmospheric general circulation models. J. Hydrom-eteoroL 3, 363–375.
  • Li, F. S., Kang, S. Z. and Zhang, F. C. 2003. Effects of CO2 enrichment, nitrogen and water on photosynthesis, evapotranspiration and water use efficiency. Chinese If Applied Ecol. 14, 387-393 (in Chinese).
  • Li, Y. P. and Ji, J. J. 2001. Model estimates of global carbon flux between vegetation and the atmosphere. Advance Atmos. Sci. 18, 807–818.
  • Liu, Y. M., Wu, G. X., Liu, H. and Liu, P. 2001. Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere. Clim. Dyn. 19, 327–338.
  • Liu, Y. M., Wu, G. X. and Ren, R. C. 2004. Relationship between the subtropical anticyclone and diabatic heating. J. Clim. 17, 682–698.
  • Lu, J. H. and Ji, J. J. 2002a. A simulation study of atmosphere-vegetation interactions over the Tibetan Plateau, Part I: physical flux and param-eters. Chinese J. Atmos. Sci. 26, 111-126 (in Chinese).
  • Lu, J. H. and Ji, J. J. 2002b. A simulation study of atmosphere-vegetation interactions over the Tibetan Plateau, Part II: net primary productivity and leaf area index. Chinese J. Atmos. Sci. 26, 254-262 (in Chinese).
  • Lu, J. H. and Ji, J. J. 2006. A simulation and mechanism of long-term variations at land surface over arid/semi-arid area in north China. J. Geophys. Res. 111, D09306, 10.1029/2005JDO06252.
  • Myneni, R. B. Dong, J., Tucker, C. J., Kaufmann, R. K., Kauppi, P. E. and co-authors. 2001. A large carbon sink in the woody biomass of northern forest. Proc. Natl. Acad. Sci. 98, 4784–14789.
  • Olsen, S. C. and Randerson, J. T. 2004. Differences between surface and column atmospheric CO2 and implications for carbon cycle research. J. Geophys. Res. 109, D02301, 10.1029/2003JD003968.
  • Phillips, N. A. 1973. Principles of large scale numerical weather predic-tion. In: Dynamic Meteorology (ed. P. Morel). D. Reidel Publishing Comp, Dordrecht, Holland, pp 96.
  • Pitman, A. J., Henderson-seller, A., Desborough, C. E., Yang, Z. L., Abramopoulos, F. and other co-authos. 1999. Key results and implications from phase 1(c) of the Project for Intercompari-son of Land-surface Parametrization Schemes. Clim. Dyn. 15, 673–684.
  • Riedo, M., Gyalistras, D., Fischlin, A. and Fuhrer, J. 1999. Using an ecosystem model linked to GCM-derived local weather scenarios to analyse effects of climate change ande levated CO2 on dry matter pro-duction and partitioning, and water use in temperate managed grass-lands. Global Change Biol. 5, 213–223.
  • Schulze, E. D., Kelliher, F. M., Ko-rner, C., Lloyd, J. and Leuning, R. 1994. Relationships among maximum stomatal conductance, ecosys-tem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annual Rev. EcoL Sys-tematics 25, 629–660.
  • Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G. and co-authors. 1997. Modelling the exchanges of energy, water and carbon between the continents and the atmosphere. Science 275, 502–509.
  • Shao, Y. and Henderson-Sellers, A. 1996. Modeling soil moisture: a Project for Intercomparison of Land Surface Parametrization Schemes Phase2 (b). J. Geophys. Res. 101, 7227–7250.
  • Shukla, J. and Mintz, Y. 1982. Influence of land-surface evapotranspira-tion on the earth's climate. Science 215, 1498–1501.
  • Simmons, A. J. and Gibson, J. K. 2000. The ERA-40 project plan. ERA-40 Project Report Series 1, ECMWF, Shinfield Park, Reading, United Kingdom, pp. 63.
  • Sun, H. Y., Liu, C. M., Zhang, X. Y., Shen, Y. J. and Zhang, Y. Q. 2006. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric. Water Manage. 85, 211–218.
  • Varejao-Silva, M. A., Franchito, S. H. and Rao, V. B. 1998. A coupled biosphere—atmosphere climate model suitable for studies of climatic change due to land surface alterations. J. Clim. 11, 1749–1767. Wang, B., Liu, H. and Shi, G. Y. 2000. In: Chapter 3: Radiation and cloud scheme, IAP Global Ocean Atmosphere-Land System Model (eds. X. H. Zhang et al.). Science Press, Beijing, New York, pp. 28–49.
  • Woodward, F. I., Smith, T. M. and Emanuel, W. R. 1995. A global land primary productivity and phytogeography model. Global Biogeochem. Cycles 9,471–490.
  • Wu, G. X., Zhang, X. H., Liu, H., Yu, Y. Q., Jin, X. Z. and co-authors. 1997. Global ocean-atmosphere-land system model of LASG (GOALS/LASG) and its performance in simulation study. Q.J. Appl Meteorol. 8, 15-28 (in Chinese).
  • Xue, Y., Juang, H. M. H., Li, W. P., Prince, S., DeFries, R. and co-authors. 2004. Role of land surface processes in monsoon devel-opment: East Asia and West Africa J. Geophy. Res. 109, D03105, 10.1029/2003JD003556.
  • Yu, J. Y. and Mechoso, C. R. 1999. A discussion on the errors in the surface heat fluxes simulated by a coupled GCM. J. Clim. 12, 416-426.
  • Zeng, Q. C. 1963. Characteristic parameters and dynamical equations of atmospheric motions. Acta Meteorol. Sinica, 33, 472-498 (in Chinese).
  • Zhang, T., Wu, G. X. and Guo, Y. F. 2002. Energy budget bias in global coupled ocean-atmosphere-land model. Acta Meteorol. Sinica 60, 278-289 (in Chinese).
  • Zheng, D. L., Prince, S. and Wright, R. 2003. Terrestrial net primary production estimates for 0.5o grid cells from field observations- a con-tribution to global biogeochemical modelling. Global Change Biol. 9, 46–64.
  • Zhuang, Q., Mguire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J. and co-authors. 2003. Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: a modeling analysis of the influences of soil thermal dynamics. Tellus 55B, 751–776.
  • Zobler, L. 1986. A world soil file for global climate modeling. NASA Tech. Memo. 87802, NASA Goddard Institute for Space Studies, New York, USA, 1–33.